default search action
Andrea Borghesi
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j14]Martin Molan, Mohsen Seyedkazemi Ardebili, Junaid Ahmed Khan, Francesco Beneventi, Daniele Cesarini, Andrea Borghesi, Andrea Bartolini:
GRAAFE: GRaph Anomaly Anticipation Framework for Exascale HPC systems. Future Gener. Comput. Syst. 160: 644-653 (2024) - [j13]Emmen Farooq, Michela Milano, Andrea Borghesi:
Harnessing federated learning for anomaly detection in supercomputer nodes. Future Gener. Comput. Syst. 161: 673-685 (2024) - [c36]Lorenzo Tribuiani, Luca Giuliani, Allegra De Filippo, Andrea Borghesi:
Expert-MusiComb: Injective Domain Knowledge in a Neuro-Symbolic Approach for Music Generation. CREAI@ECAI 2024: 46-58 - 2023
- [j12]Gregor Molan, Gregor Dolinar, Jovan Bojkovski, Radu Prodan, Andrea Borghesi, Martin Molan:
Model for Quantitative Estimation of Functionality Influence on the Final Value of a Software Product. IEEE Access 11: 115599-115616 (2023) - [j11]Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, Andrea Bartolini:
RUAD: Unsupervised anomaly detection in HPC systems. Future Gener. Comput. Syst. 141: 542-554 (2023) - [j10]Andrea Borghesi, Alessio Burrello, Andrea Bartolini:
ExaMon-X: A Predictive Maintenance Framework for Automatic Monitoring in Industrial IoT Systems. IEEE Internet Things J. 10(4): 2995-3005 (2023) - [c35]Luca Giuliani, Allegra De Filippo, Andrea Borghesi:
Towards Intelligent Music Production: A Sample-based Approach. CREAI@AI*IA 2023: 50-59 - [c34]Francesco Antici, Andrea Borghesi, Zeynep Kiziltan:
Online Job Failure Prediction in an HPC System. Euro-Par Workshops 2023: 167-179 - [c33]Matteo Francobaldi, Allegra De Filippo, Andrea Borghesi, Nikola Pizurica, Igor Jovancevic, Tim Llewellynn, Miguel de Prado:
TinderAI: Support System for Matching AI Algorithms and Embedded Devices. FLAIRS 2023 - [c32]Luca Giuliani, Francesco Ballerini, Allegra De Filippo, Andrea Borghesi:
MusiComb: a Sample-based Approach to Music Generation Through Constraints. ICTAI 2023: 194-198 - [c31]Emmen Farooq, Andrea Borghesi:
A Federated Learning Approach for Anomaly Detection in High Performance Computing. ICTAI 2023: 496-500 - [c30]Allegra De Filippo, Luca Giuliani, Eleonora Mancini, Andrea Borghesi, Paola Mello, Michela Milano:
Towards Symbiotic Creativity: A Methodological Approach to Compare Human and AI Robotic Dance Creations. IJCAI 2023: 5806-5814 - [c29]Martin Molan, Junaid Ahmed Khan, Andrea Borghesi, Andrea Bartolini:
Graph Neural Networks for Anomaly Anticipation in HPC Systems. ICPE (Companion) 2023: 239-244 - [d13]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset: time-aggregated data for anomaly detection. Zenodo, 2023 - [d12]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 1: from 20-03 to 20-12. Zenodo, 2023 - [d11]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 2: from 21-01 to 21-06. Zenodo, 2023 - [d10]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 3: from 21-07 to 21-09. Zenodo, 2023 - [d9]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 4: from 21-10 to 21-12. Zenodo, 2023 - [d8]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 5: from 22-01 to 22-02. Zenodo, 2023 - [d7]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 6: 22-03. Zenodo, 2023 - [d6]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 7: 22-04. Zenodo, 2023 - [d5]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 8: 22-05. Zenodo, 2023 - [d4]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 9: 22-06. Zenodo, 2023 - [d3]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 10: 22-07. Zenodo, 2023 - [d2]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 11: 22-08. Zenodo, 2023 - [d1]Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi, Luca Benini, Francesco Beneventi, Andrea Bartolini:
M100 dataset 12: 22-09. Zenodo, 2023 - [i17]W. A. Ahmad, Andrea Bartolini, Francesco Beneventi, Luca Benini, Andrea Borghesi, Marco Cicala, Privato Forestieri, Cosimo Gianfreda, Daniele Gregori, Antonio Libri, Filippo Spiga, Simone Tinti:
Design of an energy aware petaflops class high performance cluster based on power architecture. CoRR abs/2307.05790 (2023) - [i16]Francesco Antici, Andrea Borghesi, Zeynep Kiziltan:
Online Job Failure Prediction in an HPC System. CoRR abs/2308.15481 (2023) - 2022
- [j9]Andrea Borghesi, Diego Di Salvo, Pietro Ciolli, Teresa Falcone, Marco Ravanelli, Davide Farina, Nicola Carapella:
Detection Rate and Variability in Measurement of Mandibular Incisive Canal on Cone-Beam Computed Tomography: A Study of 220 Dentate Hemi-Mandibles from Italy. J. Imaging 8(6): 161 (2022) - [j8]Allegra De Filippo, Andrea Borghesi, Andrea Boscarino, Michela Milano:
HADA: An automated tool for hardware dimensioning of AI applications. Knowl. Based Syst. 251: 109199 (2022) - [j7]Andrea Borghesi, Martin Molan, Michela Milano, Andrea Bartolini:
Anomaly Detection and Anticipation in High Performance Computing Systems. IEEE Trans. Parallel Distributed Syst. 33(4): 739-750 (2022) - [c28]Luca Giuliani, Allegra De Filippo, Andrea Borghesi, Paola Mello, Michela Milano:
A Multi-modal Perspective for the Artistic Evaluation of Robotic Dance Performances. CREAI@AI*IA 2022: 84-93 - [c27]Martin Molan, Andrea Borghesi, Luca Benini, Andrea Bartolini:
Semi-supervised anomaly detection on a Tier-0 HPC system. CF 2022: 203-204 - [c26]Allegra De Filippo, Andrea Borghesi:
Constrained Hardware Dimensioning for AI Algorithms. PAIS@ECAI 2022: 145-148 - [c25]Martin Molan, Andrea Borghesi, Luca Benini, Andrea Bartolini:
Analysing Supercomputer Nodes Behaviour with the Latent Representation of Deep Learning Models. Euro-Par 2022: 171-185 - [c24]Martin Molan, Andrea Borghesi, Luca Benini, Andrea Bartolini:
Machine Learning Methodologies to Support HPC Systems Operations: Anomaly Detection. Euro-Par Workshops 2022: 294-298 - [c23]Bassem Hichri, Anass Driate, Andrea Borghesi, Francesco Giovannini:
Predictive Maintenance Based on Machine Learning Model. AIAI (2) 2022: 250-261 - [i15]Stefano Teso, Laurens Bliek, Andrea Borghesi, Michele Lombardi, Neil Yorke-Smith, Tias Guns, Andrea Passerini:
Machine Learning for Combinatorial Optimisation of Partially-Specified Problems: Regret Minimisation as a Unifying Lens. CoRR abs/2205.10157 (2022) - [i14]Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, Andrea Bartolini:
RUAD: unsupervised anomaly detection in HPC systems. CoRR abs/2208.13169 (2022) - 2021
- [j6]Alberto Signoroni, Mattia Savardi, Sergio Benini, Nicola Adami, Riccardo Leonardi, Paolo Gibellini, Filippo Vaccher, Marco Ravanelli, Andrea Borghesi, Roberto Maroldi, Davide Farina:
BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset. Medical Image Anal. 71: 102046 (2021) - [c22]Andrea Borghesi, Giuseppe Di Modica, Paolo Bellavista, Varun Gowtham, Alexander Willner, Daniel Nehls, Florian Kintzler, Stephan Cejka, Simone Rossi Tisbeni, Alessandro Costantini, Matteo Galletti, Marica Antonacci, Jean Christian Ahouangonou:
IoTwins: Design and Implementation of a Platform for the Management of Digital Twins in Industrial Scenarios. CCGRID 2021: 625-633 - [c21]Martin Molan, Andrea Borghesi, Francesco Beneventi, Massimiliano Guarrasi, Andrea Bartolini:
An Explainable Model for Fault Detection in HPC Systems. ISC Workshops 2021: 378-391 - [i13]Federico Baldo, Lorenzo Dall'Olio, Mattia Ceccarelli, Riccardo Scheda, Michele Lombardi, Andrea Borghesi, Stefano Diciotti, Michela Milano:
Deep Learning for Virus-Spreading Forecasting: a Brief Survey. CoRR abs/2103.02346 (2021) - 2020
- [j5]Alessio Netti, Zeynep Kiziltan, Özalp Babaoglu, Alina Sîrbu, Andrea Bartolini, Andrea Borghesi:
A machine learning approach to online fault classification in HPC systems. Future Gener. Comput. Syst. 110: 1009-1022 (2020) - [j4]Daniele Cesarini, Andrea Bartolini, Andrea Borghesi, Carlo Cavazzoni, Mathieu Luisier, Luca Benini:
Countdown Slack: A Run-Time Library to Reduce Energy Footprint in Large-Scale MPI Applications. IEEE Trans. Parallel Distributed Syst. 31(11): 2696-2709 (2020) - [c20]Andrea Borghesi, Giuseppe Tagliavini, Michele Lombardi, Luca Benini, Michela Milano:
Combining learning and optimization for transprecision computing. CF 2020: 10-18 - [c19]Andrea Borghesi, Federico Baldo, Michele Lombardi, Michela Milano:
Injective Domain Knowledge in Neural Networks for Transprecision Computing. LOD (1) 2020: 587-600 - [c18]Michele Lombardi, Federico Baldo, Andrea Borghesi, Michela Milano:
An Analysis of Regularized Approaches for Constrained Machine Learning. TAILOR 2020: 112-119 - [i12]Andrea Borghesi, Federico Baldo, Michele Lombardi, Michela Milano:
Injective Domain Knowledge in Neural Networks for Transprecision Computing. CoRR abs/2002.10214 (2020) - [i11]Andrea Borghesi, Giuseppe Tagliavini, Michele Lombardi, Luca Benini, Michela Milano:
Combining Learning and Optimization for Transprecision Computing. CoRR abs/2002.10890 (2020) - [i10]Michele Lombardi, Federico Baldo, Andrea Borghesi, Michela Milano:
An Analysis of Regularized Approaches for Constrained Machine Learning. CoRR abs/2005.10674 (2020) - [i9]Andrea Borghesi, Federico Baldo, Michela Milano:
Improving Deep Learning Models via Constraint-Based Domain Knowledge: a Brief Survey. CoRR abs/2005.10691 (2020) - [i8]Alberto Signoroni, Mattia Savardi, Sergio Benini, Nicola Adami, Riccardo Leonardi, Paolo Gibellini, Filippo Vaccher, Marco Ravanelli, Andrea Borghesi, Roberto Maroldi, Davide Farina:
End-to-end learning for semiquantitative rating of COVID-19 severity on Chest X-rays. CoRR abs/2006.04603 (2020) - [i7]Alessio Netti, Zeynep Kiziltan, Özalp Babaoglu, Alina Sîrbu, Andrea Bartolini, Andrea Borghesi:
A Machine Learning Approach to Online Fault Classification in HPC Systems. CoRR abs/2007.14241 (2020)
2010 – 2019
- 2019
- [j3]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems. Eng. Appl. Artif. Intell. 85: 634-644 (2019) - [j2]Andrea Borghesi, Andrea Bartolini, Michela Milano, Luca Benini:
Pricing schemes for energy-efficient HPC systems: Design and exploration. Int. J. High Perform. Comput. Appl. 33(4) (2019) - [c17]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Anomaly Detection Using Autoencoders in High Performance Computing Systems. AAAI 2019: 9428-9433 - [c16]Andrea Borghesi, Antonio Libri, Luca Benini, Andrea Bartolini:
Online Anomaly Detection in HPC Systems. AICAS 2019: 229-233 - [c15]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Anomaly Detection using Autoencoders in High Performance Computing Systems. DDC@AI*IA 2019: 24-32 - [c14]Andrea Borghesi, Michela Milano, Luca Benini:
Frequency Assignment in High Performance Computing Systems. AI*IA 2019: 151-164 - [c13]Alessio Netti, Zeynep Kiziltan, Özalp Babaoglu, Alina Sîrbu, Andrea Bartolini, Andrea Borghesi:
Online Fault Classification in HPC Systems Through Machine Learning. Euro-Par 2019: 3-16 - [c12]Andrea Bartolini, Francesco Beneventi, Andrea Borghesi, Daniele Cesarini, Antonio Libri, Luca Benini, Carlo Cavazzoni:
Paving the Way Toward Energy-Aware and Automated Datacentre. ICPP Workshops 2019: 8:1-8:8 - [i6]Andrea Borghesi, Antonio Libri, Luca Benini, Andrea Bartolini:
Online Anomaly Detection in HPC Systems. CoRR abs/1902.08447 (2019) - [i5]Daniele Cesarini, Andrea Bartolini, Andrea Borghesi, Carlo Cavazzoni, Mathieu Luisier, Luca Benini:
COUNTDOWN Slack: a Run-time Library to Reduce Energy Footprint in Large-scale MPI Applications. CoRR abs/1909.12684 (2019) - 2018
- [j1]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Scheduling-based power capping in high performance computing systems. Sustain. Comput. Informatics Syst. 19: 1-13 (2018) - [c11]Andrea Bartolini, Andrea Borghesi, Antonio Libri, Francesco Beneventi, Daniele Gregori, Simone Tinti, Cosimo Gianfreda, Piero Altoe:
The D.A.V.I.D.E. big-data-powered fine-grain power and performance monitoring support. CF 2018: 303-308 - [c10]Alessio Netti, Zeynep Kiziltan, Özalp Babaoglu, Alina Sîrbu, Andrea Bartolini, Andrea Borghesi:
FINJ: A Fault Injection Tool for HPC Systems. Euro-Par Workshops 2018: 800-812 - [c9]Matthias Maiterth, Gregory A. Koenig, Kevin T. Pedretti, Siddhartha Jana, Natalie J. Bates, Andrea Borghesi, Dave Montoya, Andrea Bartolini, Milos Puzovic:
Energy and Power Aware Job Scheduling and Resource Management: Global Survey - Initial Analysis. IPDPS Workshops 2018: 685-693 - [i4]Andrea Borghesi, Andrea Bartolini, Michela Milano, Luca Benini:
Pricing Schemes for Energy-Efficient HPC Systems: Design and Exploration. CoRR abs/1806.05135 (2018) - [i3]Alessio Netti, Zeynep Kiziltan, Özalp Babaoglu, Alina Sîrbu, Andrea Bartolini, Andrea Borghesi:
FINJ: A Fault Injection Tool for HPC Systems. CoRR abs/1807.10056 (2018) - [i2]Alessio Netti, Zeynep Kiziltan, Özalp Babaoglu, Alina Sîrbu, Andrea Bartolini, Andrea Borghesi:
Online Fault Classification in HPC Systems through Machine Learning. CoRR abs/1810.11208 (2018) - [i1]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Anomaly Detection using Autoencoders in High Performance Computing Systems. CoRR abs/1811.05269 (2018) - 2017
- [b1]Andrea Borghesi:
Power-Aware Job Dispatching in High Performance Computing Systems. University of Bologna, Italy, 2017 - [c8]Wissam Abu Ahmad, Andrea Bartolini, Francesco Beneventi, Luca Benini, Andrea Borghesi, Marco Cicala, Privato Forestieri, Cosimo Gianfreda, Daniele Gregori, Antonio Libri, Filippo Spiga, Simone Tinti:
Design of an Energy Aware Petaflops Class High Performance Cluster Based on Power Architecture. IPDPS Workshops 2017: 964-973 - [c7]Cristian Galleguillos, Alina Sîrbu, Zeynep Kiziltan, Özalp Babaoglu, Andrea Borghesi, Thomas Bridi:
Data-Driven Job Dispatching in HPC Systems. MOD 2017: 449-461 - 2016
- [c6]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Predictive Modeling for Job Power Consumption in HPC Systems. ISC 2016: 181-199 - 2015
- [c5]Valerio Iachini, Andrea Borghesi, Michela Milano:
Agent Based Simulation of Incentive Mechanisms on Photovoltaic Adoption. AI*IA 2015: 136-148 - [c4]Andrea Borghesi, Francesca Collina, Michele Lombardi, Michela Milano, Luca Benini:
Power Capping in High Performance Computing Systems. CP 2015: 524-540 - [c3]Andrea Borghesi, Christian Conficoni, Michele Lombardi, Andrea Bartolini:
MS3: A Mediterranean-stile job scheduler for supercomputers - do less when it's too hot! HPCS 2015: 88-95 - 2014
- [c2]Andrea Bartolini, Andrea Borghesi, Thomas Bridi, Michele Lombardi, Michela Milano:
Proactive Workload Dispatching on the EURORA Supercomputer. CP 2014: 765-780 - 2013
- [c1]Andrea Borghesi, Michela Milano, Marco Gavanelli, Tony Woods:
Simulation Of Incentive Mechanisms For Renewable Energy Policies. ECMS 2013: 32-38
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 20:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint