iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.5244/C.27.4
{"id":"https://openalex.org/W2052661627","doi":"https://doi.org/10.5244/c.27.4","title":"Metric Regression Forests for Human Pose Estimation","display_name":"Metric Regression Forests for Human Pose Estimation","publication_year":2013,"publication_date":"2013-01-01","ids":{"openalex":"https://openalex.org/W2052661627","doi":"https://doi.org/10.5244/c.27.4","mag":"2052661627"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5244/c.27.4","pdf_url":"http://www.bmva.org/bmvc/2013/Papers/paper0004/paper0004.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"http://www.bmva.org/bmvc/2013/Papers/paper0004/paper0004.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076908763","display_name":"Gerard Pons\u2010Moll","orcid":"https://orcid.org/0000-0001-5115-7794"},"institutions":[{"id":"https://openalex.org/I149899117","display_name":"Max Planck Society","ror":"https://ror.org/01hhn8329","country_code":"DE","type":"nonprofit","lineage":["https://openalex.org/I149899117"]},{"id":"https://openalex.org/I4210086037","display_name":"Max Planck Innovation","ror":"https://ror.org/00d0v0049","country_code":"DE","type":"facility","lineage":["https://openalex.org/I149899117","https://openalex.org/I4210086037"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Gerard Pons-Moll","raw_affiliation_strings":["Max Planck Society, Munich, Germany"],"affiliations":[{"raw_affiliation_string":"Max Planck Society, Munich, Germany","institution_ids":["https://openalex.org/I149899117","https://openalex.org/I4210086037"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039055363","display_name":"Jonathan M. Taylor","orcid":"https://orcid.org/0000-0001-7047-1789"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jonathan Taylor","raw_affiliation_strings":["Microsoft (United States), Redmond, United States"],"affiliations":[{"raw_affiliation_string":"Microsoft (United States), Redmond, United States","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002831957","display_name":"Jamie Shotton","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jamie Shotton","raw_affiliation_strings":["Microsoft (United States), Redmond, United States"],"affiliations":[{"raw_affiliation_string":"Microsoft (United States), Redmond, United States","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061237128","display_name":"Aaron Hertzmann","orcid":"https://orcid.org/0000-0001-9667-0292"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"education","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Aaron Hertzmann","raw_affiliation_strings":["University of Toronto, Toronto, Canada"],"affiliations":[{"raw_affiliation_string":"University of Toronto, Toronto, Canada","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018851970","display_name":"Andrew Fitzgibbon","orcid":"https://orcid.org/0000-0002-9839-660X"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andrew Fitzgibbon","raw_affiliation_strings":["Microsoft (United States), Redmond, United States"],"affiliations":[{"raw_affiliation_string":"Microsoft (United States), Redmond, United States","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.342,"has_fulltext":false,"cited_by_count":31,"citation_normalized_percentile":{"value":0.808805,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"4.1","last_page":"4.11"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Action Recognition and Pose Estimation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10719","display_name":"Analysis of Three-Dimensional Shape Structures","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.8140042},{"id":"https://openalex.org/keywords/pose-estimation","display_name":"Pose Estimation","score":0.688723},{"id":"https://openalex.org/keywords/foreground-segmentation","display_name":"Foreground Segmentation","score":0.591821},{"id":"https://openalex.org/keywords/3d-human-pose","display_name":"3D Human Pose","score":0.579462},{"id":"https://openalex.org/keywords/mesh-segmentation","display_name":"Mesh Segmentation","score":0.569495},{"id":"https://openalex.org/keywords/multiple-object-tracking","display_name":"Multiple Object Tracking","score":0.566208},{"id":"https://openalex.org/keywords/maxima-and-minima","display_name":"Maxima and minima","score":0.55524355},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.45923173}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.8140042},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.6544234},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6325504},{"id":"https://openalex.org/C165818556","wikidata":"https://www.wikidata.org/wiki/Q213488","display_name":"Geodesic","level":2,"score":0.62501776},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.6198152},{"id":"https://openalex.org/C186633575","wikidata":"https://www.wikidata.org/wiki/Q845060","display_name":"Maxima and minima","level":2,"score":0.55524355},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.5442434},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5250387},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.48741415},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.45923173},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.44590533},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37274978},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.25026017},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.5244/c.27.4","pdf_url":"http://www.bmva.org/bmvc/2013/Papers/paper0004/paper0004.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5244/c.27.4","pdf_url":"http://www.bmva.org/bmvc/2013/Papers/paper0004/paper0004.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.74,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W137456267","https://openalex.org/W1508437923","https://openalex.org/W1874285077","https://openalex.org/W1969223365","https://openalex.org/W1989476314","https://openalex.org/W2000205118","https://openalex.org/W2006178360","https://openalex.org/W2014905483","https://openalex.org/W2029134438","https://openalex.org/W2049381231","https://openalex.org/W205376076","https://openalex.org/W2092146246","https://openalex.org/W2112324691","https://openalex.org/W2118020555","https://openalex.org/W2125337786","https://openalex.org/W2128638437","https://openalex.org/W2129905273","https://openalex.org/W2149276699","https://openalex.org/W2152829748","https://openalex.org/W2154053313","https://openalex.org/W2154988037","https://openalex.org/W2156094778","https://openalex.org/W2165558283","https://openalex.org/W2168415715","https://openalex.org/W2169528473","https://openalex.org/W2169738563","https://openalex.org/W2172156083","https://openalex.org/W2482133267","https://openalex.org/W2494779131","https://openalex.org/W64404897"],"related_works":["https://openalex.org/W4394728283","https://openalex.org/W4390874210","https://openalex.org/W4388844349","https://openalex.org/W4386184937","https://openalex.org/W4384918963","https://openalex.org/W2153939756","https://openalex.org/W2128027845","https://openalex.org/W2105231718","https://openalex.org/W2093104230","https://openalex.org/W1493875009"],"abstract_inverted_index":{"Traditionally,":[0],"human":[1],"pose":[2,25,39,51],"estimation":[3],"algorithms":[4],"could":[5],"be":[6],"classified":[7],"into":[8],"generative":[9],"[2]":[10],"and":[11,34],"discriminative":[12],"[4]":[13],"approaches.":[14],"Generative":[15],"approaches":[16,42],"model":[17,104,141,189,214],"the":[18,21,95,110,145,184,187,193,202,210,213,223,240,243,259,278],"likelihood":[19],"of":[20,75,97,113,160,201,212,231],"observations":[22],"given":[23],"a":[24,44,79,88,91,98,126,134,172,178,199,217,250,256],"estimate,":[26],"however,":[27,56],"they":[28,57],"are":[29,122],"susceptible":[30],"to":[31,50,59,61,109,144,181,238],"local":[32,116],"minima":[33],"thus":[35],"require":[36],"good":[37],"initial":[38],"estimates.":[40],"Discriminative":[41],"learn":[43],"direct":[45],"mapping":[46],"from":[47,53,249,277],"image":[48],"features":[49],"space":[52,219],"training":[54,177],"data,":[55],"struggle":[58],"generalize":[60],"unseen":[62],"poses.":[63],"Building":[64],"on":[65,94],"previous":[66],"work":[67],"[3],":[68],"Taylor":[69,156],"et":[70,157],"al.":[71],"[5]":[72],"bypass":[73],"some":[74],"these":[76,120,196],"limitations":[77],"using":[78,115,125,133,268],"hybrid-approach":[80],"that":[81,137,247],"discriminatively":[82],"predicts,":[83],"for":[84,176],"each":[85],"pixel":[86],"in":[87,242,254],"depth":[89],"image,":[90],"corresponding":[92],"point":[93],"surface":[96,211],"humanoid":[99],"mesh":[100,103],"model.":[101],"This":[102,264],"is":[105,258,265],"then":[106],"robustly":[107],"fit":[108],"resulting":[111,244],"set":[112],"correspondences":[114,121],"optimization.":[117],"Surprisingly":[118],"though,":[119],"actually":[123],"inferred":[124],"random":[127,179],"forest":[128,180],"whose":[129],"structure":[130],"was":[131],"trained":[132],"classification":[135,163],"objective":[136,164,174,236],"arbitrarily":[138],"equates":[139],"target":[140,188],"points":[142,197],"belonging":[143],"same":[146],"predefined":[147],"body":[148],"part":[149],"[3].":[150],"In":[151],"this":[152,161,206],"paper,":[153],"we":[154,208],"address":[155],"al.\u2019s":[158],"use":[159],"proxy":[162],"by":[165,222],"proposing":[166],"Metric":[167],"Space":[168],"Information":[169],"Gain":[170],"(MSIG),":[171],"replacement":[173],"function":[175,200,237,252],"directly":[182],"minimize":[183,239],"uncertainty":[185,241],"over":[186],"points,":[190],"naturally":[191],"encoding":[192],"correlation":[194],"between":[195],"as":[198,216,283],"geodesic":[203,224],"distance.":[204],"To":[205],"end,":[207],"view":[209],"U":[215],"metric":[218,226],"(U,dU)":[220],"defined":[221],"distance":[225],"dU":[227],"(see":[228],"first":[229],"panel":[230],"Figure":[232],"1).":[233],"The":[234],"natural":[235],"true":[245,279],"distributions":[246],"result":[248],"split":[251],"s":[253],"such":[255],"space,":[257],"information":[260],"gain":[261],"I(s)":[262],"[1].":[263],"generally":[266],"approximated":[267],"an":[269],"empirical":[270],"distribution":[271,281],"Q":[272],"=":[273,286],"{ui}":[274],"\u2286U":[275],"drawn":[276],"unsplit":[280],"pU":[282],"I(s)\u2248":[284],"I(s;Q)":[285],"\u0124(Q)\u2212":[287],"\u2211":[288],"i\u2208{L,R}":[289],"|Qi|":[290],"|Q|":[291],"\u0124(Qi),":[292],"(1)":[293]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2052661627","counts_by_year":[{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":7},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":5},{"year":2014,"cited_by_count":5}],"updated_date":"2024-10-09T11:38:57.343280","created_date":"2016-06-24"}