iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.5220/0006203405750582
{"id":"https://openalex.org/W2597914530","doi":"https://doi.org/10.5220/0006203405750582","title":"The Impact of Memory Dependency on Precision Forecast - An Analysis on Different Types of Time Series Databases","display_name":"The Impact of Memory Dependency on Precision Forecast - An Analysis on Different Types of Time Series Databases","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2597914530","doi":"https://doi.org/10.5220/0006203405750582","mag":"2597914530"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0006203405750582","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.5220/0006203405750582","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041194164","display_name":"Ricardo Moraes Muniz da Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I197274945","display_name":"Nagoya Institute of Technology","ror":"https://ror.org/055yf1005","country_code":"JP","type":"education","lineage":["https://openalex.org/I197274945"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ricardo Moraes Muniz da Silva","raw_affiliation_strings":["Nagoya Institute of Technology, Japan"],"affiliations":[{"raw_affiliation_string":"Nagoya Institute of Technology, Japan","institution_ids":["https://openalex.org/I197274945"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026313069","display_name":"Maur\u00edcio Kugler","orcid":"https://orcid.org/0000-0003-4241-7165"},"institutions":[{"id":"https://openalex.org/I197274945","display_name":"Nagoya Institute of Technology","ror":"https://ror.org/055yf1005","country_code":"JP","type":"education","lineage":["https://openalex.org/I197274945"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Mauricio Kugler","raw_affiliation_strings":["Nagoya Institute of Technology, Japan"],"affiliations":[{"raw_affiliation_string":"Nagoya Institute of Technology, Japan","institution_ids":["https://openalex.org/I197274945"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111801641","display_name":"Taizo Umezaki","orcid":null},"institutions":[{"id":"https://openalex.org/I197274945","display_name":"Nagoya Institute of Technology","ror":"https://ror.org/055yf1005","country_code":"JP","type":"education","lineage":["https://openalex.org/I197274945"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Taizo Umezaki","raw_affiliation_strings":["Nagoya Institute of Technology, Japan"],"affiliations":[{"raw_affiliation_string":"Nagoya Institute of Technology, Japan","institution_ids":["https://openalex.org/I197274945"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.298,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":63,"max":71},"biblio":{"volume":null,"issue":null,"first_page":"575","last_page":"582"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Predicting Stock Market Trends and Movements","score":0.9871,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Predicting Stock Market Trends and Movements","score":0.9871,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Time Series Forecasting Methods","score":0.9497,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11270","display_name":"Econophysics: Complexity in Financial Markets","score":0.9431,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/forecasting","display_name":"Forecasting","score":0.543992},{"id":"https://openalex.org/keywords/forecasting-models","display_name":"Forecasting Models","score":0.541485},{"id":"https://openalex.org/keywords/time-series-forecasting","display_name":"Time Series Forecasting","score":0.533499},{"id":"https://openalex.org/keywords/demand-forecasting","display_name":"Demand Forecasting","score":0.532452},{"id":"https://openalex.org/keywords/prediction-accuracy","display_name":"Prediction Accuracy","score":0.525998},{"id":"https://openalex.org/keywords/moving-average","display_name":"Moving average","score":0.48837203},{"id":"https://openalex.org/keywords/setar","display_name":"SETAR","score":0.46597478},{"id":"https://openalex.org/keywords/exponential-smoothing","display_name":"Exponential smoothing","score":0.44968456},{"id":"https://openalex.org/keywords/autoregressive\u2013moving-average-model","display_name":"Autoregressive\u2013moving-average model","score":0.44444042}],"concepts":[{"id":"https://openalex.org/C1297061","wikidata":"https://www.wikidata.org/wiki/Q4826945","display_name":"Autoregressive fractionally integrated moving average","level":4,"score":0.92397857},{"id":"https://openalex.org/C24338571","wikidata":"https://www.wikidata.org/wiki/Q2566298","display_name":"Autoregressive integrated moving average","level":3,"score":0.89821833},{"id":"https://openalex.org/C19768560","wikidata":"https://www.wikidata.org/wiki/Q320727","display_name":"Dependency (UML)","level":2,"score":0.80414426},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.715908},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.6666922},{"id":"https://openalex.org/C194657046","wikidata":"https://www.wikidata.org/wiki/Q7394685","display_name":"STAR model","level":4,"score":0.65456223},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6455368},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.6448834},{"id":"https://openalex.org/C175706884","wikidata":"https://www.wikidata.org/wiki/Q1130194","display_name":"Moving average","level":2,"score":0.48837203},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.47100392},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.46802267},{"id":"https://openalex.org/C30795276","wikidata":"https://www.wikidata.org/wiki/Q7389877","display_name":"SETAR","level":5,"score":0.46597478},{"id":"https://openalex.org/C133710760","wikidata":"https://www.wikidata.org/wiki/Q775837","display_name":"Exponential smoothing","level":2,"score":0.44968456},{"id":"https://openalex.org/C74883015","wikidata":"https://www.wikidata.org/wiki/Q290467","display_name":"Autoregressive\u2013moving-average model","level":3,"score":0.44444042},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.42074487},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.3882628},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.29336178},{"id":"https://openalex.org/C2986394398","wikidata":"https://www.wikidata.org/wiki/Q1805477","display_name":"Long memory","level":3,"score":0.2847498},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.28042835},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23578137},{"id":"https://openalex.org/C91602232","wikidata":"https://www.wikidata.org/wiki/Q756115","display_name":"Volatility (finance)","level":2,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0006203405750582","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0006203405750582","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4400988174","https://openalex.org/W4386755298","https://openalex.org/W4224441553","https://openalex.org/W303080079","https://openalex.org/W3023733513","https://openalex.org/W2624824116","https://openalex.org/W2408347117","https://openalex.org/W2063870691","https://openalex.org/W1541065477","https://openalex.org/W1484537345"],"abstract_inverted_index":{"Time":[0],"series":[1,66,94],"forecasting":[2,95],"is":[3,35,45,55,87,96,112,122,129,133,151,165],"an":[4,59,76,174],"important":[5,90],"type":[6],"of":[7,14,17,52,136,147,162,179],"quantitative":[8],"method":[9,39],"in":[10,67,114],"which":[11,54,68,105,146],"past":[12,110,138],"observations":[13],"a":[15,23,36,118,127,156,168],"set":[16],"variables":[18],"are":[19],"used":[20,38],"to":[21,107,116,166],"develop":[22],"model":[24,34,86],"describing":[25],"their":[26],"relationship.":[27],"The":[28,160],"Autoregressive":[29,80],"Integrated":[30,82],"Moving":[31,83],"Average":[32,84],"(ARIMA)":[33],"commonly":[37],"for":[40,64,155,173],"modelling":[41],"time":[42,65,93,158],"series.":[43,159],"It":[44,121],"applied":[46],"when":[47],"the":[48,69,79,99,134,137,141,148,152,188],"data":[49],"show":[50],"evidence":[51],"nonstationarity,":[53],"removed":[56],"by":[57],"applying":[58],"initial":[60],"differencing":[61],"step.":[62],"Alternatively,":[63],"long-run":[70],"average":[71],"decays":[72],"more":[73],"slowly":[74],"than":[75],"exponential":[77],"decay,":[78],"Fractionally":[81],"(ARFIMA)":[85],"used.":[88],"One":[89],"issue":[91],"on":[92,140],"known":[97],"as":[98],"short":[100],"and":[101,144,187,191],"long":[102],"memory":[103,192],"dependency,":[104],"corresponds":[106],"how":[108],"much":[109],"history":[111],"necessary":[113],"order":[115],"make":[117],"better":[119,169],"prediction.":[120,176],"not":[123],"always":[124],"clear":[125],"if":[126],"process":[128],"stationary":[130],"or":[131],"what":[132],"influence":[135],"samples":[139],"future":[142],"value,":[143],"thus,":[145],"two":[149],"models,":[150,186],"best":[153],"choice":[154],"given":[157],"objective":[161],"this":[163,171],"research":[164],"have":[167],"understanding":[170],"dependency":[172,193],"accurate":[175],"Several":[177],"datasets":[178],"different":[180],"contexts":[181],"were":[182,194],"processed":[183],"using":[184],"both":[185],"prediction":[189],"accuracy":[190],"compared.":[195]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2597914530","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-30T05:11:58.656961","created_date":"2017-04-07"}