iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2410.18684
{"id":"https://openalex.org/W4404306930","doi":"https://doi.org/10.48550/arxiv.2410.18684","title":"Every Component Counts: Rethinking the Measure of Success for Medical\n Semantic Segmentation in Multi-Instance Segmentation Tasks","display_name":"Every Component Counts: Rethinking the Measure of Success for Medical\n Semantic Segmentation in Multi-Instance Segmentation Tasks","publication_year":2024,"publication_date":"2024-10-24","ids":{"openalex":"https://openalex.org/W4404306930","doi":"https://doi.org/10.48550/arxiv.2410.18684"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.18684","pdf_url":"http://arxiv.org/pdf/2410.18684","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.18684","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051426025","display_name":"Alexander Jaus","orcid":"https://orcid.org/0000-0002-0669-0300"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jaus, Alexander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084474018","display_name":"Constantin Seibold","orcid":"https://orcid.org/0000-0001-6042-8437"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Seibold, Constantin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091379199","display_name":"Simon Rei\u00df","orcid":"https://orcid.org/0000-0003-1953-6211"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rei\u00df, Simon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079221964","display_name":"Zdravko Marinov","orcid":"https://orcid.org/0000-0003-0373-3958"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Marinov, Zdravko","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109743031","display_name":"Keyi Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Keyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051523008","display_name":"Zeling Ye","orcid":"https://orcid.org/0000-0002-3156-7267"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ye, Zeling","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101730873","display_name":"Stefan Krieg","orcid":"https://orcid.org/0000-0002-8417-9823"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Krieg, Stefan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017161970","display_name":"Jens Kleesiek","orcid":"https://orcid.org/0000-0001-8686-0682"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kleesiek, Jens","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087051920","display_name":"Rainer Stiefelhagen","orcid":"https://orcid.org/0000-0001-8046-4945"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stiefelhagen, Rainer","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11636","display_name":"Artificial Intelligence in Medicine","score":0.9008,"subfield":{"id":"https://openalex.org/subfields/2718","display_name":"Health Informatics"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11636","display_name":"Artificial Intelligence in Medicine","score":0.9008,"subfield":{"id":"https://openalex.org/subfields/2718","display_name":"Health Informatics"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.73049265},{"id":"https://openalex.org/keywords/clinical-decision-support","display_name":"Clinical Decision Support","score":0.531854},{"id":"https://openalex.org/keywords/medical-imaging","display_name":"Medical Imaging","score":0.519514}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.857844},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.73049265},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.7074852},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5597366},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53556556},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.41080314},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.16132048},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.18684","pdf_url":"http://arxiv.org/pdf/2410.18684","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.18684","pdf_url":"http://arxiv.org/pdf/2410.18684","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4255837520","https://openalex.org/W4234808182","https://openalex.org/W3204019825","https://openalex.org/W2387011115","https://openalex.org/W2382043075","https://openalex.org/W2365486383","https://openalex.org/W2362059367","https://openalex.org/W2357256365","https://openalex.org/W2350084742","https://openalex.org/W2348502264"],"abstract_inverted_index":{"We":[0,27,44],"present":[1],"Connected-Component~(CC)-Metrics,":[2],"a":[3,17,41,53,85,107],"novel":[4],"semantic":[5,13,37,48],"segmentation":[6,14,39,49,77],"evaluation":[7],"protocol,":[8],"targeted":[9],"to":[10,16,81,102],"align":[11],"existing":[12,47,76],"metrics":[15,50,113,134,145,173,176],"multi-instance":[18],"detection":[19],"scenario":[20,35],"in":[21,31,40,65,181],"which":[22,66,150],"each":[23,90],"connected":[24,57],"component":[25,117],"matters.":[26],"motivate":[28],"this":[29,121],"setup":[30],"the":[32,60,92,116,160],"common":[33,112],"medical":[34],"of":[36,63,96,118,126],"metastases":[38],"full-body":[42],"PET/CT.":[43],"show":[45],"how":[46],"suffer":[51],"from":[52],"bias":[54],"towards":[55],"larger":[56],"components":[58],"contradicting":[59],"clinical":[61,70],"assessment":[62],"scans":[64],"tumor":[67,91],"size":[68],"and":[69,165],"relevance":[71],"are":[72,151],"uncorrelated.":[73],"To":[74,99],"rebalance":[75],"metrics,":[78],"we":[79,105,123],"propose":[80],"evaluate":[82],"them":[83],"on":[84],"per-component":[86],"basis":[87],"thus":[88],"giving":[89],"same":[93],"weight":[94],"irrespective":[95],"its":[97],"size.":[98],"match":[100],"predictions":[101],"ground-truth":[103],"segments,":[104],"employ":[106],"proximity-based":[108],"matching":[109],"criterion,":[110],"evaluating":[111],"locally":[114],"at":[115],"interest.":[119],"Using":[120],"approach,":[122],"break":[124],"free":[125],"biases":[127],"introduced":[128,168],"by":[129,169],"large":[130],"metastasis":[131],"for":[132,153],"overlap-based":[133,175],"such":[135,146],"as":[136,147,177],"Dice":[137],"or":[138,162],"Surface":[139],"Dice.":[140],"CC-Metrics":[141],"also":[142],"improves":[143],"distance-based":[144],"Hausdorff":[148],"Distances":[149],"uninformative":[152],"small":[154],"changes":[155],"that":[156],"do":[157],"not":[158],"influence":[159],"maximum":[161],"95th":[163],"percentile,":[164],"avoids":[166],"pitfalls":[167],"directly":[170],"combining":[171],"counting-based":[172],"with":[174],"it":[178],"is":[179],"done":[180],"Panoptic":[182],"Quality.":[183]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404306930","counts_by_year":[],"updated_date":"2024-11-24T12:46:01.176242","created_date":"2024-11-13"}