iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2410.03588
{"id":"https://openalex.org/W4403884698","doi":"https://doi.org/10.48550/arxiv.2410.03588","title":"Training Over a Distribution of Hyperparameters for Enhanced Performance\n and Adaptability on Imbalanced Classification","display_name":"Training Over a Distribution of Hyperparameters for Enhanced Performance\n and Adaptability on Imbalanced Classification","publication_year":2024,"publication_date":"2024-10-04","ids":{"openalex":"https://openalex.org/W4403884698","doi":"https://doi.org/10.48550/arxiv.2410.03588"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.03588","pdf_url":"http://arxiv.org/pdf/2410.03588","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.03588","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057159356","display_name":"Kelsey Lieberman","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lieberman, Kelsey","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007443299","display_name":"Swarna Kamlam Ravindran","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ravindran, Swarna Kamlam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100777119","display_name":"Shuai Yuan","orcid":"https://orcid.org/0000-0003-4039-0464"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yuan, Shuai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5079878449","display_name":"Carlo Tomasi","orcid":"https://orcid.org/0000-0001-6104-6641"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tomasi, Carlo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":null,"cited_by_percentile_year":{"min":0,"max":86},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Handling Imbalanced Data in Classification Problems","score":0.9755,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Handling Imbalanced Data in Classification Problems","score":0.9755,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adaptability","display_name":"Adaptability","score":0.92245585},{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.8559354},{"id":"https://openalex.org/keywords/imbalanced-data","display_name":"Imbalanced Data","score":0.632852},{"id":"https://openalex.org/keywords/cost-sensitive-learning","display_name":"Cost-Sensitive Learning","score":0.540517},{"id":"https://openalex.org/keywords/classification","display_name":"Classification","score":0.53534}],"concepts":[{"id":"https://openalex.org/C177606310","wikidata":"https://www.wikidata.org/wiki/Q5674297","display_name":"Adaptability","level":2,"score":0.92245585},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.8559354},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.5088618},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48966175},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45242584},{"id":"https://openalex.org/C110121322","wikidata":"https://www.wikidata.org/wiki/Q865811","display_name":"Distribution (mathematics)","level":2,"score":0.4345562},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.43321043},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.34519756},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27645105},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.15516436},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.08554512},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.08154902},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.03588","pdf_url":"http://arxiv.org/pdf/2410.03588","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.03588","pdf_url":"http://arxiv.org/pdf/2410.03588","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W98577079","https://openalex.org/W4361251046","https://openalex.org/W4285827128","https://openalex.org/W3198113463","https://openalex.org/W3003615511","https://openalex.org/W2963844355","https://openalex.org/W2787698406","https://openalex.org/W2602382373","https://openalex.org/W2387399993","https://openalex.org/W2357124094"],"abstract_inverted_index":{"Although":[0],"binary":[1],"classification":[2],"is":[3,120],"a":[4,15,62,68,80],"well-studied":[5],"problem,":[6],"training":[7,26,58,78,116,131],"reliable":[8],"classifiers":[9],"under":[10],"severe":[11],"class":[12],"imbalance":[13,24],"remains":[14],"challenge.":[16],"Recent":[17],"techniques":[18],"mitigate":[19],"the":[20,29,87,95],"ill":[21],"effects":[22],"of":[23,64,67,82,89,98],"on":[25,41,100],"by":[27,57],"modifying":[28],"loss":[30,43],"functions":[31,44],"or":[32],"optimization":[33],"methods.":[34],"We":[35,51],"observe":[36],"that":[37,77],"different":[38,48],"hyperparameter":[39,65,125],"values":[40],"these":[42],"perform":[45],"better":[46],"at":[47],"recall":[49],"values.":[50],"propose":[52],"to":[53,132,138],"exploit":[54],"this":[55],"fact":[56],"one":[59],"model":[60],"over":[61,79],"distribution":[63,81],"values--instead":[66],"single":[69],"value--via":[70],"Loss":[71],"Conditional":[72],"Training":[73],"(LCT).":[74],"Experiments":[75],"show":[76],"hyperparameters":[83],"not":[84],"only":[85],"approximates":[86],"performance":[88,97],"several":[90],"models":[91,99,117],"but":[92],"actually":[93],"improves":[94],"overall":[96],"both":[101],"CIFAR":[102],"and":[103,111],"real":[104],"medical":[105],"imaging":[106],"applications,":[107],"such":[108],"as":[109],"melanoma":[110],"diabetic":[112],"retinopathy":[113],"detection.":[114],"Furthermore,":[115],"with":[118],"LCT":[119],"more":[121],"efficient":[122],"because":[123],"some":[124],"tuning":[126],"can":[127],"be":[128],"conducted":[129],"after":[130],"meet":[133],"individual":[134],"needs":[135],"without":[136],"needing":[137],"retrain":[139],"from":[140],"scratch.":[141]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403884698","counts_by_year":[],"updated_date":"2024-10-31T13:58:13.916313","created_date":"2024-10-30"}