iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2406.06313
{"id":"https://openalex.org/W4399554300","doi":"https://doi.org/10.48550/arxiv.2406.06313","title":"ProAct: Progressive Training for Hybrid Clipped Activation Function to\n Enhance Resilience of DNNs","display_name":"ProAct: Progressive Training for Hybrid Clipped Activation Function to\n Enhance Resilience of DNNs","publication_year":2024,"publication_date":"2024-06-10","ids":{"openalex":"https://openalex.org/W4399554300","doi":"https://doi.org/10.48550/arxiv.2406.06313"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.06313","pdf_url":"https://arxiv.org/pdf/2406.06313","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2406.06313","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113321060","display_name":"Seyedhamidreza Mousavi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mousavi, Seyedhamidreza","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002269174","display_name":"Mohammad Hasan Ahmadilivani","orcid":"https://orcid.org/0000-0002-4162-6646"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ahmadilivani, Mohammad Hasan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010286547","display_name":"Jaan Raik","orcid":"https://orcid.org/0000-0001-8113-020X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Raik, Jaan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059391257","display_name":"Maksim Jenihhin","orcid":"https://orcid.org/0000-0001-8165-9592"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jenihhin, Maksim","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5063193249","display_name":"Masoud Daneshtalab","orcid":"https://orcid.org/0000-0001-6289-1521"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Daneshtalab, Masoud","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":86},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11601","display_name":"Neural Interface Technology","score":0.8843,"subfield":{"id":"https://openalex.org/subfields/2804","display_name":"Cellular and Molecular Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T11601","display_name":"Neural Interface Technology","score":0.8843,"subfield":{"id":"https://openalex.org/subfields/2804","display_name":"Cellular and Molecular Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10429","display_name":"Brain-Computer Interfaces in Neuroscience and Medicine","score":0.8367,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10784","display_name":"Analysis of Electromyography Signal Processing","score":0.7625,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/resilience","display_name":"Resilience (materials science)","score":0.8539808},{"id":"https://openalex.org/keywords/neuroprosthetics","display_name":"Neuroprosthetics","score":0.51909}],"concepts":[{"id":"https://openalex.org/C2779585090","wikidata":"https://www.wikidata.org/wiki/Q3457762","display_name":"Resilience (materials science)","level":2,"score":0.8539808},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.6345048},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.5642713},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.33141428},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.22021717},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.14727432},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.11713806},{"id":"https://openalex.org/C95444343","wikidata":"https://www.wikidata.org/wiki/Q7141","display_name":"Cell biology","level":1,"score":0.07680264},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.06313","pdf_url":"https://arxiv.org/pdf/2406.06313","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2406.06313","pdf_url":"https://arxiv.org/pdf/2406.06313","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391375266","https://openalex.org/W2810751659","https://openalex.org/W2748952813","https://openalex.org/W258997015","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W230091440","https://openalex.org/W2233261550"],"abstract_inverted_index":{"Deep":[0],"Neural":[1],"Networks":[2],"(DNNs)":[3],"are":[4],"extensively":[5],"employed":[6],"in":[7,117,157,178,189,217],"safety-critical":[8],"applications":[9],"where":[10],"ensuring":[11],"hardware":[12,25],"reliability":[13,21],"is":[14,146],"a":[15,162,197,208],"primary":[16],"concern.":[17],"To":[18],"enhance":[19],"the":[20,32,36,80,93,104,113,122,179,190,205],"of":[22,41,95,182],"DNNs":[23,72],"against":[24],"faults,":[26],"activation":[27,52,68,85,152,165,192],"restriction":[28],"techniques":[29,126],"significantly":[30],"mitigate":[31],"fault":[33,110],"effects":[34],"at":[35,74],"DNN":[37],"structure":[38],"level,":[39],"irrespective":[40],"accelerator":[42],"architectures.":[43],"State-of-the-art":[44],"methods":[45,172],"offer":[46],"either":[47],"neuron-wise":[48,83,151,169,175],"or":[49],"layer-wise":[50,171],"clipping":[51,59,84,176,191],"functions.":[53],"They":[54],"attempt":[55],"to":[56,92,101,149,185,212],"determine":[57],"optimal":[58,187,214],"thresholds":[60,129,188,206],"using":[61],"heuristic":[62],"and":[63,170],"learning-based":[64,125],"approaches.":[65],"Layer-wise":[66],"clipped":[67,164],"functions":[69,86,153],"cannot":[70],"preserve":[71],"resilience":[73],"high":[75],"bit":[76],"error":[77],"rates.":[78],"On":[79,121],"other":[81,123],"hand,":[82,124],"introduce":[87,195],"considerable":[88],"memory":[89],"overhead":[90],"due":[91],"addition":[94],"parameters,":[96],"which":[97],"increases":[98],"their":[99],"vulnerability":[100],"faults.":[102],"Moreover,":[103],"heuristic-based":[105],"optimization":[106],"approach":[107,202],"demands":[108],"numerous":[109],"injections":[111],"during":[112],"search":[114],"process,":[115],"resulting":[116],"time-consuming":[118],"threshold":[119,215],"identification.":[120],"that":[127,144,167,173],"train":[128],"for":[130],"entire":[131],"layers":[132,156],"concurrently":[133],"often":[134],"yield":[135],"sub-optimal":[136],"results.":[137],"In":[138],"this":[139],"work,":[140],"first,":[141],"we":[142,160,194],"demonstrate":[143],"it":[145],"not":[147],"essential":[148],"incorporate":[150],"throughout":[154],"all":[155],"DNNs.":[158,183],"Then,":[159],"propose":[161],"hybrid":[163],"function":[166],"integrates":[168],"apply":[174],"only":[177],"last":[180],"layer":[181,219],"Additionally,":[184],"attain":[186],"function,":[193],"ProAct,":[196],"progressive":[198],"training":[199],"methodology.":[200],"This":[201],"iteratively":[203],"trains":[204],"on":[207],"layer-by-layer":[209],"basis,":[210],"aiming":[211],"obtain":[213],"values":[216],"each":[218],"separately.":[220]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399554300","counts_by_year":[],"updated_date":"2024-10-17T07:46:02.651806","created_date":"2024-06-12"}