iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2405.17120
{"id":"https://openalex.org/W4399116342","doi":"https://doi.org/10.48550/arxiv.2405.17120","title":"Dual VC Dimension Obstructs Sample Compression by Embeddings","display_name":"Dual VC Dimension Obstructs Sample Compression by Embeddings","publication_year":2024,"publication_date":"2024-05-27","ids":{"openalex":"https://openalex.org/W4399116342","doi":"https://doi.org/10.48550/arxiv.2405.17120"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.17120","pdf_url":"https://arxiv.org/pdf/2405.17120","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.17120","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057562506","display_name":"Zachary Chase","orcid":"https://orcid.org/0000-0001-7015-3537"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chase, Zachary","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017023245","display_name":"Bogdan Chornomaz","orcid":"https://orcid.org/0000-0001-9950-2905"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chornomaz, Bogdan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074158209","display_name":"Steve Hanneke","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hanneke, Steve","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047793114","display_name":"Shay Moran","orcid":"https://orcid.org/0000-0002-8662-2737"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moran, Shay","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5041051779","display_name":"Amir Yehudayoff","orcid":"https://orcid.org/0000-0002-0177-1814"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yehudayoff, Amir","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.8529,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.8529,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.8187,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.64347893},{"id":"https://openalex.org/keywords/wavelet-compression","display_name":"Wavelet Compression","score":0.607695},{"id":"https://openalex.org/keywords/scalable-compression","display_name":"Scalable Compression","score":0.579561},{"id":"https://openalex.org/keywords/compression","display_name":"Compression","score":0.5774},{"id":"https://openalex.org/keywords/hyperspectral-imaging","display_name":"Hyperspectral Imaging","score":0.555881},{"id":"https://openalex.org/keywords/vector-quantization","display_name":"Vector Quantization","score":0.547287}],"concepts":[{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.72792256},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.64347893},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.553325},{"id":"https://openalex.org/C2780980858","wikidata":"https://www.wikidata.org/wiki/Q110022","display_name":"Dual (grammatical number)","level":2,"score":0.4900042},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.43115658},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.26570553},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.1775614},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.09751311},{"id":"https://openalex.org/C124952713","wikidata":"https://www.wikidata.org/wiki/Q8242","display_name":"Literature","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.17120","pdf_url":"https://arxiv.org/pdf/2405.17120","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.17120","pdf_url":"https://arxiv.org/pdf/2405.17120","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4238204885","https://openalex.org/W3002753104","https://openalex.org/W2600246793","https://openalex.org/W2142036596","https://openalex.org/W2077600819","https://openalex.org/W2072657027","https://openalex.org/W2061531152","https://openalex.org/W2007980826","https://openalex.org/W1979597421"],"abstract_inverted_index":{"This":[0,187,233],"work":[1],"studies":[2],"embedding":[3,109],"of":[4,56,85,87,118,197,230,238,259,274],"arbitrary":[5],"VC":[6,10,45,57,112,177,182],"classes":[7,204],"in":[8,30,52,62,76,141,145,215],"well-behaved":[9],"classes,":[11],"focusing":[12],"particularly":[13],"on":[14,256,272],"extremal":[15,54,116,131,174,231],"classes.":[16,132,232],"Our":[17],"main":[18],"result":[19,71,144,170],"expresses":[20],"an":[21,73,115,125,236],"impossibility:":[22],"such":[23],"embeddings":[24],"necessarily":[25],"require":[26],"a":[27,42,82,119,146,168,218,250],"significant":[28],"increase":[29],"dimension.":[31],"In":[32,64],"particular,":[33],"we":[34,171],"prove":[35,217],"that":[36,48,137,222],"for":[37,130,211,243],"every":[38],"$d$":[39,47,179],"there":[40],"is":[41,156,189,206,269],"class":[43,55,113,117,175],"with":[44,176],"dimension":[46,58,178,183],"cannot":[49],"be":[50,209],"embedded":[51],"any":[53,110,173],"smaller":[59,191],"than":[60,154,192],"exponential":[61],"$d$.":[63],"addition":[65],"to":[66,93,201,208,249],"its":[67,247],"independent":[68],"interest,":[69],"this":[70,138],"has":[72,180],"important":[74],"implication":[75],"learning":[77],"theory,":[78],"as":[79],"it":[80],"reveals":[81],"fundamental":[83],"limitation":[84],"one":[86],"the":[88,95,101,159,193,226,239,257,265,275],"most":[89,185],"extensively":[90],"studied":[91],"approaches":[92],"tackling":[94],"long-standing":[96],"sample":[97,127,147,160],"compression":[98,128,148,161],"conjecture.":[99,162],"Concretely,":[100],"approach":[102],"proposed":[103],"by":[104,158],"Floyd":[105],"and":[106,122,268],"Warmuth":[107],"entails":[108],"given":[111],"into":[114],"comparable":[120],"dimension,":[121],"then":[123],"applying":[124],"optimal":[126],"scheme":[129,149],"However,":[133],"our":[134],"results":[135],"imply":[136],"strategy":[139],"would":[140],"some":[142,212],"cases":[143],"at":[150,184],"least":[151],"exponentially":[152,190],"larger":[153],"what":[155],"predicted":[157],"The":[163,262],"above":[164],"implications":[165],"follow":[166],"from":[167],"general":[169,202],"prove:":[172],"dual":[181,227],"$2d+1$.":[186],"bound":[188,195],"classical":[194,240],"$2^{d+1}-1$":[196],"Assouad,":[198],"which":[199],"applies":[200],"concept":[203],"(and":[205],"known":[207],"unimprovable":[210],"classes).":[213],"We":[214],"fact":[216],"stronger":[219],"result,":[220],"establishing":[221],"$2d+1$":[223],"upper":[224],"bounds":[225],"Radon":[228,241,277],"number":[229],"theorem":[234,242],"represents":[235],"abstraction":[237],"convex":[244],"sets,":[245],"extending":[246],"applicability":[248],"wider":[251],"combinatorial":[252],"framework,":[253],"without":[254],"relying":[255],"specifics":[258],"Euclidean":[260],"convexity.":[261],"proof":[263],"utilizes":[264],"topological":[266],"method":[267],"primarily":[270],"based":[271],"variants":[273],"Topological":[276],"Theorem.":[278]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399116342","counts_by_year":[],"updated_date":"2024-12-04T21:45:49.830895","created_date":"2024-05-29"}