{"id":"https://openalex.org/W4398157127","doi":"https://doi.org/10.48550/arxiv.2405.10658","title":"Cost-Effective Fault Tolerance for CNNs Using Parameter Vulnerability\n Based Hardening and Pruning","display_name":"Cost-Effective Fault Tolerance for CNNs Using Parameter Vulnerability\n Based Hardening and Pruning","publication_year":2024,"publication_date":"2024-05-17","ids":{"openalex":"https://openalex.org/W4398157127","doi":"https://doi.org/10.48550/arxiv.2405.10658"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.10658","pdf_url":"https://arxiv.org/pdf/2405.10658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2405.10658","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002269174","display_name":"Mohammad Hasan Ahmadilivani","orcid":"https://orcid.org/0000-0002-4162-6646"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ahmadilivani, Mohammad Hasan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113321060","display_name":"Seyedhamidreza Mousavi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mousavi, Seyedhamidreza","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010286547","display_name":"Jaan Raik","orcid":"https://orcid.org/0000-0001-8113-020X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Raik, Jaan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063193249","display_name":"Masoud Daneshtalab","orcid":"https://orcid.org/0000-0001-6289-1521"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Daneshtalab, Masoud","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5059391257","display_name":"Maksim Jenihhin","orcid":"https://orcid.org/0000-0001-8165-9592"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jenihhin, Maksim","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":86},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.60857654},{"id":"https://openalex.org/keywords/hardening","display_name":"Hardening (computing)","score":0.5503412},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.535817},{"id":"https://openalex.org/keywords/uncertainty-estimation","display_name":"Uncertainty Estimation","score":0.532588},{"id":"https://openalex.org/keywords/machine-learning","display_name":"Machine Learning","score":0.50544},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.501432},{"id":"https://openalex.org/keywords/vulnerability","display_name":"Vulnerability (computing)","score":0.4661219}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.60857654},{"id":"https://openalex.org/C44255700","wikidata":"https://www.wikidata.org/wiki/Q978423","display_name":"Hardening (computing)","level":3,"score":0.5503412},{"id":"https://openalex.org/C95713431","wikidata":"https://www.wikidata.org/wiki/Q631425","display_name":"Vulnerability (computing)","level":2,"score":0.4661219},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4532725},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.3796014},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3251078},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.3216916},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.21380585},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1797927},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.14590153},{"id":"https://openalex.org/C171250308","wikidata":"https://www.wikidata.org/wiki/Q11468","display_name":"Nanotechnology","level":1,"score":0.101085514},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.09881309},{"id":"https://openalex.org/C144027150","wikidata":"https://www.wikidata.org/wiki/Q48803","display_name":"Horticulture","level":1,"score":0.08827007},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.10658","pdf_url":"https://arxiv.org/pdf/2405.10658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.10658","pdf_url":"https://arxiv.org/pdf/2405.10658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4206442282","https://openalex.org/W2594301978","https://openalex.org/W2384505857","https://openalex.org/W2379704676","https://openalex.org/W2378744544","https://openalex.org/W2373300491","https://openalex.org/W2355171581","https://openalex.org/W2145253956","https://openalex.org/W1998810860","https://openalex.org/W1212596013"],"abstract_inverted_index":{"Convolutional":[0],"Neural":[1],"Networks":[2],"(CNNs)":[3],"have":[4],"become":[5],"integral":[6],"in":[7],"safety-critical":[8],"applications,":[9],"thus":[10],"raising":[11],"concerns":[12],"about":[13],"their":[14,108],"fault":[15,19,38,125],"tolerance.":[16],"Conventional":[17],"hardware-dependent":[18],"tolerance":[20,39],"methods,":[21],"such":[22],"as":[23],"Triple":[24],"Modular":[25],"Redundancy":[26],"(TMR),":[27],"are":[28,111],"computationally":[29],"expensive,":[30],"imposing":[31],"a":[32,65,151,170],"remarkable":[33],"overhead":[34,142],"on":[35],"CNNs.":[36,146],"Whereas":[37],"techniques":[40],"can":[41],"be":[42],"applied":[43],"either":[44],"at":[45,50],"the":[46,51,54,77,91,96,101,144,162,175,185],"hardware":[47],"level":[48],"or":[49],"model":[52],"levels,":[53],"latter":[55],"provides":[56],"more":[57],"flexibility":[58],"without":[59],"sacrificing":[60],"generality.":[61],"This":[62],"paper":[63],"introduces":[64],"model-level":[66],"hardening":[67],"approach":[68,81],"for":[69],"CNNs":[70,178],"by":[71],"integrating":[72],"error":[73],"correction":[74,119,131],"directly":[75],"into":[76],"neural":[78],"networks.":[79],"The":[80,121],"is":[82,158],"hardware-agnostic":[83],"and":[84,117],"does":[85],"not":[86],"require":[87],"any":[88],"changes":[89],"to":[90,129,143,181],"underlying":[92],"accelerator":[93],"device.":[94],"Analyzing":[95],"vulnerability":[97,154],"of":[98,103],"parameters":[99],"enables":[100],"duplication":[102],"selective":[104],"filters/neurons":[105],"so":[106],"that":[107,160],"output":[109],"channels":[110],"effectively":[112],"corrected":[113],"with":[114,133,169],"an":[115,140],"efficient":[116],"robust":[118],"layer.":[120],"proposed":[122,159],"method":[123],"demonstrates":[124],"resilience":[126],"nearly":[127],"equivalent":[128],"TMR-based":[130],"but":[132],"significantly":[134],"reduced":[135],"overhead.":[136],"Nevertheless,":[137],"there":[138],"exists":[139],"inherent":[141],"baseline":[145],"To":[147],"tackle":[148],"this":[149],"issue,":[150],"cost-effective":[152],"parameter":[153],"based":[155],"pruning":[156,164],"technique":[157],"outperforms":[161],"conventional":[163],"method,":[165],"yielding":[166],"smaller":[167],"networks":[168],"negligible":[171],"accuracy":[172],"loss.":[173],"Remarkably,":[174],"hardened":[176,186],"pruned":[177],"perform":[179],"up":[180],"24\\%":[182],"faster":[183],"than":[184],"un-pruned":[187],"ones.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4398157127","counts_by_year":[],"updated_date":"2024-10-17T08:17:30.468070","created_date":"2024-05-21"}