{"id":"https://openalex.org/W4396882673","doi":"https://doi.org/10.48550/arxiv.2405.08843","title":"FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive\n Graph-Based Learning","display_name":"FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive\n Graph-Based Learning","publication_year":2024,"publication_date":"2024-05-14","ids":{"openalex":"https://openalex.org/W4396882673","doi":"https://doi.org/10.48550/arxiv.2405.08843"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.08843","pdf_url":"https://arxiv.org/pdf/2405.08843","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://arxiv.org/pdf/2405.08843","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5111195385","display_name":"Duc Thinh Ngo","orcid":null},"institutions":[{"id":"https://openalex.org/I4210127572","display_name":"IMT Atlantique","ror":"https://ror.org/030hj3061","country_code":"FR","type":"education","lineage":["https://openalex.org/I4210127572"]},{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"company","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Duc Thinh Ngo","raw_affiliation_strings":["Orange Innovation (France)","STACK - Software Stack for Massively Geo-Distributed Infrastructures (Centre Inria de l'universit\u00e9 de Rennes, Campus de Beaulieu, 35042 Rennes cedex\r\nIMT Atlantique - Campus de Nantes, 4, rue Alfred Kastler - La Chantrerie, CS 20722, 44307 Nantes cedex 3 - France)"],"affiliations":[{"raw_affiliation_string":"STACK - Software Stack for Massively Geo-Distributed Infrastructures (Centre Inria de l'universit\u00e9 de Rennes, Campus de Beaulieu, 35042 Rennes cedex\r\nIMT Atlantique - Campus de Nantes, 4, rue Alfred Kastler - La Chantrerie, CS 20722, 44307 Nantes cedex 3 - France)","institution_ids":["https://openalex.org/I4210127572"]},{"raw_affiliation_string":"Orange Innovation (France)","institution_ids":["https://openalex.org/I19370010"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049148352","display_name":"Kandaraj Piamrat","orcid":"https://orcid.org/0000-0002-4350-0254"},"institutions":[{"id":"https://openalex.org/I4210127572","display_name":"IMT Atlantique","ror":"https://ror.org/030hj3061","country_code":"FR","type":"education","lineage":["https://openalex.org/I4210127572"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Kandaraj Piamrat","raw_affiliation_strings":["STACK - Software Stack for Massively Geo-Distributed Infrastructures (Centre Inria de l'universit\u00e9 de Rennes, Campus de Beaulieu, 35042 Rennes cedex\r\nIMT Atlantique - Campus de Nantes, 4, rue Alfred Kastler - La Chantrerie, CS 20722, 44307 Nantes cedex 3 - France)"],"affiliations":[{"raw_affiliation_string":"STACK - Software Stack for Massively Geo-Distributed Infrastructures (Centre Inria de l'universit\u00e9 de Rennes, Campus de Beaulieu, 35042 Rennes cedex\r\nIMT Atlantique - Campus de Nantes, 4, rue Alfred Kastler - La Chantrerie, CS 20722, 44307 Nantes cedex 3 - France)","institution_ids":["https://openalex.org/I4210127572"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066189735","display_name":"Ons Aouedi","orcid":"https://orcid.org/0000-0002-2343-0850"},"institutions":[{"id":"https://openalex.org/I186903577","display_name":"University of Luxembourg","ror":"https://ror.org/036x5ad56","country_code":"LU","type":"education","lineage":["https://openalex.org/I186903577"]}],"countries":["LU"],"is_corresponding":false,"raw_author_name":"Ons Aouedi","raw_affiliation_strings":["University of Luxembourg [Luxembourg] (Campus Kirchberg\r\n6, rue Richard Coudenhove-Kalergi\r\nL-1359 Luxembourg\r\n\r\nCampus de Limpertsberg\r\n162a, avenue de la Fa\u00efencerie\r\nL-1511 Luxembourg\r\n\r\nCampus de Belval\r\n2, avenue de l'Universit\u00e9\r\nL-4365 Esch-sur-Alzette - Luxembourg)"],"affiliations":[{"raw_affiliation_string":"University of Luxembourg [Luxembourg] (Campus Kirchberg\r\n6, rue Richard Coudenhove-Kalergi\r\nL-1359 Luxembourg\r\n\r\nCampus de Limpertsberg\r\n162a, avenue de la Fa\u00efencerie\r\nL-1511 Luxembourg\r\n\r\nCampus de Belval\r\n2, avenue de l'Universit\u00e9\r\nL-4365 Esch-sur-Alzette - Luxembourg)","institution_ids":["https://openalex.org/I186903577"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074474915","display_name":"Thomas Hassan","orcid":"https://orcid.org/0000-0003-2912-1984"},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"company","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Thomas Hassan","raw_affiliation_strings":["Orange Innovation (France)"],"affiliations":[{"raw_affiliation_string":"Orange Innovation (France)","institution_ids":["https://openalex.org/I19370010"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056995372","display_name":"Philippe Ra\u00efpin-Parv\u00e9dy","orcid":"https://orcid.org/0000-0001-5605-2262"},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"company","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Philippe Raipin-Parv\u00e9dy","raw_affiliation_strings":["Orange Innovation (France)"],"affiliations":[{"raw_affiliation_string":"Orange Innovation (France)","institution_ids":["https://openalex.org/I19370010"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9336,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9336,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13918","display_name":"Wireless Communication Technologies","score":0.9317,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Graph Neural Network Models and Applications","score":0.9296,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signal-processing-on-graphs","display_name":"Signal Processing on Graphs","score":0.598794},{"id":"https://openalex.org/keywords/knowledge-graph-embedding","display_name":"Knowledge Graph Embedding","score":0.558167},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.552234},{"id":"https://openalex.org/keywords/network-embedding","display_name":"Network Embedding","score":0.546576},{"id":"https://openalex.org/keywords/graph-convolutional-networks","display_name":"Graph Convolutional Networks","score":0.537536}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61701494},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.54054374},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33056045},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.2537355}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.08843","pdf_url":"https://arxiv.org/pdf/2405.08843","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.science/hal-04573168","pdf_url":"https://hal.science/hal-04573168/document","source":null,"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2405.08843","pdf_url":"https://arxiv.org/pdf/2405.08843","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.45,"id":"https://metadata.un.org/sdg/5","display_name":"Gender equality"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4395014643","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"From":[0],"a":[1,48,85,91],"telecommunication":[2],"standpoint,":[3],"the":[4,65,74,139],"surge":[5],"in":[6,142],"users":[7],"and":[8,17,32,68,90],"services":[9],"challenges":[10],"next-generation":[11],"networks":[12],"with":[13,104,120,145],"escalating":[14],"traffic":[15,21,53,61,103],"demands":[16],"limited":[18],"resources.":[19],"Accurate":[20],"prediction":[22],"can":[23,97,113],"offer":[24],"network":[25,30],"operators":[26],"valuable":[27],"insights":[28],"into":[29],"conditions":[31],"suggest":[33],"optimal":[34],"allocation":[35],"policies.":[36],"Recently,":[37],"spatio-temporal":[38],"forecasting,":[39],"employing":[40],"Graph":[41],"Neural":[42],"Networks":[43],"(GNNs),":[44],"has":[45],"emerged":[46],"as":[47],"promising":[49],"method":[50],"for":[51],"cellular":[52,102],"prediction.":[54],"However,":[55],"existing":[56],"studies,":[57],"inspired":[58],"by":[59,117],"road":[60],"forecasting":[62,94],"formulations,":[63],"overlook":[64],"dynamic":[66],"deployment":[67],"removal":[69],"of":[70,101],"base":[71],"stations,":[72],"requiring":[73],"GNN-based":[75,93],"forecaster":[76],"to":[77,126,133,138,149],"handle":[78],"an":[79],"evolving":[80],"graph.":[81],"This":[82],"work":[83],"introduces":[84],"novel":[86],"inductive":[87],"learning":[88,119],"scheme":[89],"generalizable":[92],"model":[95,112],"that":[96,110],"process":[98],"diverse":[99],"graphs":[100],"one-time":[105],"training.":[106],"We":[107],"also":[108],"demonstrate":[109],"this":[111],"be":[114],"easily":[115],"leveraged":[116],"transfer":[118],"minimal":[121],"effort,":[122],"making":[123],"it":[124],"applicable":[125],"different":[127],"areas.":[128],"Experimental":[129],"results":[130],"show":[131],"up":[132],"9.8%":[134],"performance":[135],"improvement":[136],"compared":[137],"state-of-the-art,":[140],"especially":[141],"rare-data":[143],"settings":[144],"training":[146],"data":[147],"reduced":[148],"below":[150],"20%.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4396882673","counts_by_year":[],"updated_date":"2024-11-26T10:06:54.025022","created_date":"2024-05-14"}