{"id":"https://openalex.org/W4393063714","doi":"https://doi.org/10.48550/arxiv.2403.13602","title":"Bayesian Physics-informed Neural Networks for System Identification of\n Inverter-dominated Power Systems","display_name":"Bayesian Physics-informed Neural Networks for System Identification of\n Inverter-dominated Power Systems","publication_year":2024,"publication_date":"2024-03-20","ids":{"openalex":"https://openalex.org/W4393063714","doi":"https://doi.org/10.48550/arxiv.2403.13602"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.13602","pdf_url":"http://arxiv.org/pdf/2403.13602","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2403.13602","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025642988","display_name":"Simon Stock","orcid":"https://orcid.org/0000-0003-4360-9687"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stock, Simon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060831457","display_name":"Davood Babazadeh","orcid":"https://orcid.org/0000-0003-3946-7655"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Babazadeh, Davood","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081723488","display_name":"Christian Becker","orcid":"https://orcid.org/0000-0002-5707-345X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Becker, Christian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5071509927","display_name":"Spyros Chatzivasileiadis","orcid":"https://orcid.org/0000-0003-4698-8694"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chatzivasileiadis, Spyros","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.982,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.63738245},{"id":"https://openalex.org/keywords/neural-system","display_name":"Neural system","score":0.46735457}],"concepts":[{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.63738245},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.61389476},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.47802934},{"id":"https://openalex.org/C2986949344","wikidata":"https://www.wikidata.org/wiki/Q9404","display_name":"Neural system","level":2,"score":0.46735457},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.46508995},{"id":"https://openalex.org/C11190779","wikidata":"https://www.wikidata.org/wiki/Q664575","display_name":"Inverter","level":3,"score":0.44109315},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.39514172},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.3791925},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.35655868},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.32302195},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32107466},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.30937308},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.29432547},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.24303493},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.21638614},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.2097789},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.087875634},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.13602","pdf_url":"http://arxiv.org/pdf/2403.13602","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.13602","pdf_url":"http://arxiv.org/pdf/2403.13602","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390604093","https://openalex.org/W3147659851","https://openalex.org/W3119861251","https://openalex.org/W3019679473","https://openalex.org/W2373210218","https://openalex.org/W2367891013","https://openalex.org/W2315503980","https://openalex.org/W2103570580","https://openalex.org/W2084837496","https://openalex.org/W2007108787"],"abstract_inverted_index":{"While":[0],"the":[1,10,20,48,59,65,88,104,124,150,156,168,187,196],"uncertainty":[2,80,120],"in":[3,46,73,183],"generation":[4],"and":[5,63,142,155,174,204],"demand":[6],"increases,":[7],"accurately":[8],"estimating":[9,74],"dynamic":[11,51],"characteristics":[12],"of":[13,95,106,131,185,191],"power":[14,49,75],"systems":[15],"becomes":[16],"crucial":[17],"for":[18,119,200],"employing":[19],"appropriate":[21],"control":[22],"actions":[23],"to":[24,87,98,145,149,219],"maintain":[25],"their":[26],"stability.":[27],"In":[28],"our":[29],"previous":[30],"work,":[31],"we":[32,180],"have":[33],"shown":[34],"that":[35,165,182],"Bayesian":[36,117],"Physics-informed":[37,107],"Neural":[38,108],"Networks":[39,109],"(BPINNs)":[40],"outperform":[41],"conventional":[42],"system":[43,50,76,141,144,201],"identification":[44,202],"methods":[45],"identifying":[47],"behavior":[52],"under":[53,78],"measurement":[54],"noise.":[55],"This":[56],"paper":[57],"takes":[58],"next":[60],"natural":[61],"step":[62],"addresses":[64],"more":[66],"significant":[67],"challenge,":[68],"exploring":[69],"how":[70],"BPINN":[71,102,125,169,188],"perform":[72],"dynamics":[77],"increasing":[79],"from":[81,134],"many":[82],"Inverter-based":[83],"Resources":[84],"(IBRs)":[85],"connected":[86],"grid.":[89],"These":[90],"introduce":[91],"a":[92,128,135],"different":[93],"type":[94],"uncertainty,":[96,186],"compared":[97],"noisy":[99],"measurements.":[100],"The":[101],"combines":[103],"advantages":[105],"(PINNs),":[110],"such":[111,171],"as":[112,172],"inverse":[113],"problem":[114],"applicability,":[115],"with":[116],"approaches":[118,164],"quantification.":[121],"We":[122,161],"explore":[123],"performance":[126],"on":[127],"wide":[129],"range":[130],"systems,":[132],"starting":[133],"single":[136],"machine":[137],"infinite":[138],"bus":[139],"(SMIB)":[140],"3-bus":[143],"extract":[146],"important":[147],"insights,":[148],"14-bus":[151],"CIGRE":[152],"distribution":[153],"grid,":[154],"large":[157],"IEEE":[158],"118-bus":[159],"system.":[160],"also":[162],"investigate":[163],"can":[166],"accelerate":[167],"training,":[170],"pretraining":[173],"transfer":[175,211],"learning.":[176],"Throughout":[177],"this":[178],"paper,":[179],"show":[181],"presence":[184],"achieves":[189],"orders":[190],"magnitude":[192],"lower":[193,206],"errors":[194,207],"than":[195,208],"widely":[197],"popular":[198],"method":[199],"SINDy":[203],"significantly":[205],"PINN,":[209],"while":[210],"learning":[212],"helps":[213],"reduce":[214],"training":[215],"time":[216],"by":[217],"up":[218],"80":[220],"%.":[221]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393063714","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-13T03:44:38.000251","created_date":"2024-03-22"}