{"id":"https://openalex.org/W4393023629","doi":"https://doi.org/10.48550/arxiv.2403.11060","title":"Intelligent Railroad Grade Crossing: Leveraging Semantic Segmentation\n and Object Detection for Enhanced Safety","display_name":"Intelligent Railroad Grade Crossing: Leveraging Semantic Segmentation\n and Object Detection for Enhanced Safety","publication_year":2024,"publication_date":"2024-03-16","ids":{"openalex":"https://openalex.org/W4393023629","doi":"https://doi.org/10.48550/arxiv.2403.11060"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.11060","pdf_url":"https://arxiv.org/pdf/2403.11060","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2403.11060","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100661971","display_name":"Al Amin","orcid":"https://orcid.org/0009-0005-8520-441X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Amin, Al","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005990642","display_name":"Deo Chimba","orcid":"https://orcid.org/0000-0002-2881-1417"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chimba, Deo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101707529","display_name":"Kamrul Hasan","orcid":"https://orcid.org/0000-0002-5474-4633"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hasan, Kamrul","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5077884092","display_name":"Emmanuel S. Samson","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Samson, Emmanuel","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11606","display_name":"Automated Pavement Inspection and Maintenance","score":0.9725,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11606","display_name":"Automated Pavement Inspection and Maintenance","score":0.9725,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11357","display_name":"Risk Analysis and Management","score":0.9683,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T14056","display_name":"Guidelines for Warning Design and Comprehension","score":0.964,"subfield":{"id":"https://openalex.org/subfields/3207","display_name":"Social Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/crack-detection","display_name":"Crack Detection","score":0.519819},{"id":"https://openalex.org/keywords/inherent-safety","display_name":"Inherent Safety","score":0.508887},{"id":"https://openalex.org/keywords/dynamic-safety-analysis","display_name":"Dynamic Safety Analysis","score":0.503352},{"id":"https://openalex.org/keywords/level-crossing","display_name":"Level crossing","score":0.49266344}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7408306},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6862647},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5523539},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52896494},{"id":"https://openalex.org/C1975866","wikidata":"https://www.wikidata.org/wiki/Q171448","display_name":"Level crossing","level":2,"score":0.49266344},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.48396945},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.45056856},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3331904},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.16596135},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.11060","pdf_url":"https://arxiv.org/pdf/2403.11060","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.11060","pdf_url":"https://arxiv.org/pdf/2403.11060","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W587599514","https://openalex.org/W4379231730","https://openalex.org/W4319309705","https://openalex.org/W4292830139","https://openalex.org/W4251783005","https://openalex.org/W34464115","https://openalex.org/W2800591694","https://openalex.org/W2262786710","https://openalex.org/W2045577915","https://openalex.org/W1975380057"],"abstract_inverted_index":{"Crashes":[0],"and":[1,11,32,70,103,163,176],"delays":[2,34],"at":[3,35,77,120,139,156,220],"Railroad":[4,22,78],"Highway":[5,79],"Grade":[6,80],"Crossings":[7],"(RHGC),":[8],"where":[9],"highways":[10],"railroads":[12],"intersect,":[13],"pose":[14],"significant":[15],"safety":[16,76,219],"concerns":[17],"for":[18,48,105,116,217],"the":[19,26,58,113,133,140,145,151,159,165,181,194],"U.S.":[20],"Federal":[21],"Administration":[23],"(FRA).":[24],"Despite":[25],"critical":[27],"importance":[28],"of":[29,43,97,153,161],"addressing":[30],"accidents":[31],"traffic":[33],"highway-railroad":[36,221],"intersections,":[37],"there":[38],"is":[39],"a":[40,86,95,121,129,169,199,214],"notable":[41],"dearth":[42],"research":[44,84],"on":[45,128],"practical":[46],"solutions":[47],"managing":[49],"these":[50],"issues.":[51],"In":[52,192],"response":[53],"to":[54,74,147],"this":[55],"gap":[56],"in":[57],"literature,":[59],"our":[60],"study":[61],"introduces":[62],"an":[63],"intelligent":[64],"system":[65,146,208],"that":[66,93],"leverages":[67],"machine":[68],"learning":[69],"computer":[71],"vision":[72],"techniques":[73,111],"enhance":[75],"crossings":[81],"(RHGC).":[82],"This":[83,142,203],"proposed":[85,182],"Non-Maximum":[87],"Suppression":[88],"(NMS)-":[89],"based":[90],"ensemble":[91,187],"model":[92,188,197],"integrates":[94],"variety":[96],"YOLO":[98],"variants,":[99],"specifically":[100],"YOLOv5S,":[101],"YOLOv5M,":[102],"YOLOv5L,":[104],"grade-crossing":[106],"object":[107,185],"detection,":[108],"utilizes":[109],"segmentation":[110,196],"from":[112],"UNet":[114,195],"architecture":[115],"detecting":[117],"approaching":[118],"rail":[119],"grade":[122,206],"crossing.":[123],"Both":[124],"methods":[125],"are":[126],"implemented":[127],"Raspberry":[130],"Pi.":[131],"Moreover,":[132],"strategy":[134],"employs":[135],"high-definition":[136],"cameras":[137],"installed":[138],"RHGC.":[141],"framework":[143],"enables":[144],"monitor":[148],"objects":[149],"within":[150],"Region":[152],"Interest":[154],"(ROI)":[155],"crossings,":[157],"detect":[158],"approach":[160],"trains,":[162],"clear":[164],"crossing":[166,207],"area":[167],"before":[168],"train":[170],"arrives.":[171],"Regarding":[172],"accuracy,":[173],"precision,":[174],"recall,":[175],"Intersection":[177],"over":[178],"Union":[179],"(IoU),":[180],"state-of-the-art":[183],"NMS-based":[184],"detection":[186],"achieved":[189],"96%":[190],"precision.":[191],"addition,":[193],"obtained":[198],"98%":[200],"IoU":[201],"value.":[202],"automated":[204],"railroad":[205],"powered":[209],"by":[210],"artificial":[211],"intelligence":[212],"represents":[213],"promising":[215],"solution":[216],"enhancing":[218],"intersections.":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393023629","counts_by_year":[],"updated_date":"2024-11-19T17:16:09.076268","created_date":"2024-03-21"}