iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2402.13038
{"id":"https://openalex.org/W4392019350","doi":"https://doi.org/10.48550/arxiv.2402.13038","title":"N-MPC for Deep Neural Network-Based Collision Avoidance exploiting Depth\n Images","display_name":"N-MPC for Deep Neural Network-Based Collision Avoidance exploiting Depth\n Images","publication_year":2024,"publication_date":"2024-02-20","ids":{"openalex":"https://openalex.org/W4392019350","doi":"https://doi.org/10.48550/arxiv.2402.13038"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.13038","pdf_url":"https://arxiv.org/pdf/2402.13038","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2402.13038","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078369478","display_name":"Martin Jacquet","orcid":"https://orcid.org/0000-0001-9438-4356"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jacquet, Martin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5022659812","display_name":"Kostas Alexis","orcid":"https://orcid.org/0000-0002-9989-298X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alexis, Kostas","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety Systems","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety Systems","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10586","display_name":"Sampling-Based Motion Planning Algorithms","score":0.9713,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/collision-avoidance","display_name":"Collision Avoidance","score":0.574576},{"id":"https://openalex.org/keywords/optimal-motion-planning","display_name":"Optimal Motion Planning","score":0.539551},{"id":"https://openalex.org/keywords/model-compression","display_name":"Model Compression","score":0.529811},{"id":"https://openalex.org/keywords/lane-detection","display_name":"Lane Detection","score":0.525991},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.52085286},{"id":"https://openalex.org/keywords/trajectory-prediction","display_name":"Trajectory Prediction","score":0.513441}],"concepts":[{"id":"https://openalex.org/C2780864053","wikidata":"https://www.wikidata.org/wiki/Q5147495","display_name":"Collision avoidance","level":3,"score":0.685053},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6045813},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.52085286},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5150292},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50241375},{"id":"https://openalex.org/C121704057","wikidata":"https://www.wikidata.org/wiki/Q352070","display_name":"Collision","level":2,"score":0.4592675},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42406702},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.33343112},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.15592709}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.13038","pdf_url":"https://arxiv.org/pdf/2402.13038","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.13038","pdf_url":"https://arxiv.org/pdf/2402.13038","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377865163","https://openalex.org/W4315865067","https://openalex.org/W3208304128","https://openalex.org/W3193857078","https://openalex.org/W3042530408","https://openalex.org/W3005999311","https://openalex.org/W2889566344","https://openalex.org/W2888956734","https://openalex.org/W2340892746","https://openalex.org/W1819938260"],"abstract_inverted_index":{"This":[0],"paper":[1],"introduces":[2],"a":[3,11,38,84,87],"Nonlinear":[4],"Model":[5],"Predictive":[6],"Control":[7],"(N-MPC)":[8],"framework":[9,94],"exploiting":[10],"Deep":[12],"Neural":[13],"Network":[14],"for":[15,20,41],"processing":[16],"onboard-captured":[17],"depth":[18,34],"images":[19,35],"collision":[21,39,102],"avoidance":[22],"in":[23,63,125],"trajectory-tracking":[24],"tasks":[25],"with":[26,86,135],"UAVs.":[27],"The":[28,77,92,128],"network":[29,53],"is":[30,54,95,131],"trained":[31],"on":[32],"simulated":[33],"to":[36,70,113,121],"output":[37],"score":[40],"queried":[42],"3D":[43],"points":[44],"within":[45],"the":[46,64,74,101,115,119,136],"sensor":[47],"field":[48],"of":[49,83,90,100,118],"view.":[50],"Then,":[51],"this":[52],"translated":[55],"into":[56],"an":[57],"algebraic":[58],"symbolic":[59],"equation":[60],"and":[61,110],"included":[62],"N-MPC,":[65],"explicitly":[66],"constraining":[67],"predicted":[68],"positions":[69],"be":[71],"collision-free":[72],"throughout":[73],"receding":[75],"horizon.":[76],"N-MPC":[78,120],"achieves":[79],"real":[80,111],"time":[81],"control":[82,88],"UAV":[85],"frequency":[89],"100Hz.":[91],"proposed":[93],"validated":[96],"through":[97],"statistical":[98],"analysis":[99],"classifier":[103],"network,":[104],"as":[105,107],"well":[106],"Gazebo":[108],"simulations":[109],"experiments":[112],"assess":[114],"resulting":[116],"capabilities":[117],"effectively":[122],"avoid":[123],"collisions":[124],"cluttered":[126],"environments.":[127],"associated":[129],"code":[130],"released":[132],"open-source":[133],"along":[134],"training":[137],"images.":[138]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392019350","counts_by_year":[],"updated_date":"2024-11-21T10:11:51.588211","created_date":"2024-02-22"}