{"id":"https://openalex.org/W4391376698","doi":"https://doi.org/10.48550/arxiv.2401.16131","title":"CIMIL-CRC: a clinically-informed multiple instance learning framework\n for patient-level colorectal cancer molecular subtypes classification from\n H\\&E stained images","display_name":"CIMIL-CRC: a clinically-informed multiple instance learning framework\n for patient-level colorectal cancer molecular subtypes classification from\n H\\&E stained images","publication_year":2024,"publication_date":"2024-01-29","ids":{"openalex":"https://openalex.org/W4391376698","doi":"https://doi.org/10.48550/arxiv.2401.16131"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.16131","pdf_url":"http://arxiv.org/pdf/2401.16131","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2401.16131","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028956233","display_name":"Hadar Hezi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hezi, Hadar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112160559","display_name":"M Gelber","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gelber, Matan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087872395","display_name":"Alexander Balabanov","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Balabanov, Alexander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086771704","display_name":"Yosef E. Maruvka","orcid":"https://orcid.org/0000-0002-8918-9887"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Maruvka, Yosef E.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5089641146","display_name":"Moti Freiman","orcid":"https://orcid.org/0000-0003-1083-1548"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Freiman, Moti","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":86},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9897,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9897,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10552","display_name":"Global Trends in Colorectal Cancer Research","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Ontologies and Text Mining","score":0.953,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/content-based-image-retrieval","display_name":"Content-Based Image Retrieval","score":0.508081}],"concepts":[{"id":"https://openalex.org/C526805850","wikidata":"https://www.wikidata.org/wiki/Q188874","display_name":"Colorectal cancer","level":3,"score":0.71664155},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.48223123},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40330774},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3462496},{"id":"https://openalex.org/C143998085","wikidata":"https://www.wikidata.org/wiki/Q162555","display_name":"Oncology","level":1,"score":0.33837214},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.3217305},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.31331286}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.16131","pdf_url":"http://arxiv.org/pdf/2401.16131","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.16131","pdf_url":"http://arxiv.org/pdf/2401.16131","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2391409986","https://openalex.org/W2159000141","https://openalex.org/W2140569197","https://openalex.org/W2037631372","https://openalex.org/W2030889776","https://openalex.org/W1979139803","https://openalex.org/W1978297557","https://openalex.org/W1974041167","https://openalex.org/W1966775726","https://openalex.org/W1966504330"],"abstract_inverted_index":{"Treatment":[0],"approaches":[1],"for":[2,27,87,109,193],"colorectal":[3],"cancer":[4],"(CRC)":[5],"are":[6,72],"highly":[7],"dependent":[8],"on":[9,80,116,196],"the":[10,28,45,62,82,93,107,117,131,160,164,167,180,184,197],"molecular":[11],"subtype,":[12],"as":[13],"immunotherapy":[14],"has":[15],"shown":[16],"efficacy":[17],"in":[18,37,92],"cases":[19],"with":[20,143,202],"microsatellite":[21,29],"instability":[22],"(MSI)":[23],"but":[24],"is":[25,34],"ineffective":[26],"stable":[30],"(MSS)":[31],"subtype.":[32],"There":[33],"promising":[35],"potential":[36],"utilizing":[38],"deep":[39],"neural":[40],"networks":[41],"(DNNs)":[42],"to":[43,61,113,148,169],"automate":[44],"differentiation":[46],"of":[47,65,95],"CRC":[48],"subtypes":[49],"by":[50,135],"analyzing":[51],"Hematoxylin":[52],"and":[53,154,209,233],"Eosin":[54],"(H\\&E)":[55],"stained":[56],"whole-slide":[57],"images":[58],"(WSIs).":[59],"Due":[60],"extensive":[63],"size":[64],"WSIs,":[66],"Multiple":[67],"Instance":[68],"Learning":[69],"(MIL)":[70],"techniques":[71],"typically":[73],"explored.":[74],"However,":[75],"existing":[76],"MIL":[77,133],"methods":[78,100,218],"focus":[79],"identifying":[81],"most":[83],"representative":[84],"image":[85],"patches":[86],"classification,":[88,206],"which":[89],"may":[90],"result":[91],"loss":[94],"critical":[96],"information.":[97],"Additionally,":[98],"these":[99],"often":[101],"overlook":[102],"clinically":[103],"relevant":[104],"information,":[105],"like":[106],"tendency":[108],"MSI":[110],"class":[111],"tumors":[112],"predominantly":[114],"occur":[115],"proximal":[118],"(right":[119],"side)":[120],"colon.":[121],"We":[122,174],"introduce":[123],"`CIMIL-CRC',":[124],"a":[125,138,188,203],"DNN":[126],"framework":[127],"that:":[128],"1)":[129],"solves":[130],"MSI/MSS":[132],"problem":[134],"efficiently":[136],"combining":[137],"pre-trained":[139],"feature":[140],"extraction":[141],"model":[142,168,194],"principal":[144],"component":[145],"analysis":[146],"(PCA)":[147],"aggregate":[149],"information":[150],"from":[151,187],"all":[152,217],"patches,":[153],"2)":[155],"integrates":[156],"clinical":[157],"priors,":[158],"particularly":[159],"tumor":[161],"location":[162],"within":[163],"colon,":[165],"into":[166],"enhance":[170],"patient-level":[171],"classification":[172,212],"accuracy.":[173],"assessed":[175],"our":[176],"CIMIL-CRC":[177,215],"method":[178],"using":[179],"average":[181],"area":[182],"under":[183],"curve":[185],"(AUC)":[186],"5-fold":[189],"cross-validation":[190],"experimental":[191],"setup":[192],"development":[195],"TCGA-CRC-DX":[198],"cohort,":[199],"contrasting":[200],"it":[201],"baseline":[204],"patch-level":[205,211],"MIL-only":[207],"approach,":[208],"Clinically-informed":[210],"approach.":[213],"Our":[214],"outperformed":[216],"(AUROC:":[219],"$0.92\\pm0.002$":[220],"(95\\%":[221,226,230,235],"CI":[222,227,231,236],"0.91-0.92),":[223],"vs.":[224],"$0.79\\pm0.02$":[225],"0.76-0.82),":[228],"$0.86\\pm0.01$":[229],"0.85-0.88),":[232],"$0.87\\pm0.01$":[234],"0.86-0.88),":[237],"respectively).":[238],"The":[239],"improvement":[240],"was":[241],"statistically":[242],"significant.":[243]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391376698","counts_by_year":[],"updated_date":"2024-11-04T21:12:52.939635","created_date":"2024-01-31"}