iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2311.14014
{"id":"https://openalex.org/W4389072419","doi":"https://doi.org/10.48550/arxiv.2311.14014","title":"On the Hyperparameter Landscapes of Machine Learning Algorithms","display_name":"On the Hyperparameter Landscapes of Machine Learning Algorithms","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389072419","doi":"https://doi.org/10.48550/arxiv.2311.14014"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.14014","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.14014","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103036649","display_name":"Mingyu Huang","orcid":"https://orcid.org/0000-0003-2829-8673"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Mingyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100343450","display_name":"Ke Li","orcid":"https://orcid.org/0000-0001-7200-4244"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Ke","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9724,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.86924267},{"id":"https://openalex.org/keywords/fitness-landscape","display_name":"Fitness landscape","score":0.59062886},{"id":"https://openalex.org/keywords/hyperparameter-optimization","display_name":"Hyperparameter Optimization","score":0.49511614}],"concepts":[{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.86924267},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6718565},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6703881},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6325449},{"id":"https://openalex.org/C91852762","wikidata":"https://www.wikidata.org/wiki/Q3307742","display_name":"Fitness landscape","level":3,"score":0.59062886},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.55234},{"id":"https://openalex.org/C10485038","wikidata":"https://www.wikidata.org/wiki/Q48996162","display_name":"Hyperparameter optimization","level":3,"score":0.49511614},{"id":"https://openalex.org/C205711294","wikidata":"https://www.wikidata.org/wiki/Q176953","display_name":"Rendering (computer graphics)","level":2,"score":0.44451863},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.14490819},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.14014","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.14014","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.14014","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388119537","https://openalex.org/W4287818966","https://openalex.org/W4281646320","https://openalex.org/W4205712847","https://openalex.org/W3200811867","https://openalex.org/W3192751261","https://openalex.org/W3169687406","https://openalex.org/W3114025147","https://openalex.org/W3014750173","https://openalex.org/W2953665647"],"abstract_inverted_index":{"Despite":[0],"the":[1,17,49,108,140,171,178],"recent":[2],"success":[3,141],"in":[4,40,45,48,60,116],"a":[5,31,53,155,161,192],"plethora":[6],"of":[7,55,88,104,113,118,142,163,173,191,195],"hyperparameter":[8],"optimization":[9],"(HPO)":[10],"methods":[11],"for":[12,34,139],"machine":[13],"learning":[14,146],"(ML)":[15],"models,":[16],"intricate":[18],"interplay":[19],"between":[20],"model":[21,96],"hyperparameters":[22],"(HPs)":[23],"and":[24,58,101,121,134,144,165,181],"predictive":[25],"losses":[26],"(a.k.a":[27],"fitness),":[28],"which":[29],"is":[30,185],"key":[32],"prerequisite":[33],"understanding":[35,190],"HPO,":[36],"remain":[37],"notably":[38],"underexplored":[39],"our":[41],"community.":[42],"This":[43],"results":[44],"limited":[46],"explainability":[47],"HPO":[50],"process,":[51],"rendering":[52],"lack":[54],"human":[56],"trust":[57],"difficulties":[59],"pinpointing":[61],"algorithm":[62],"bottlenecks.":[63],"In":[64],"this":[65,73,174],"paper,":[66],"we":[67,182],"aim":[68],"to":[69,187],"shed":[70],"light":[71],"on":[72,83],"black":[74],"box":[75],"by":[76,153,176],"conducting":[77],"large-scale":[78],"fitness":[79],"landscape":[80],"analysis":[81],"(FLA)":[82],"1,500":[84],"HP":[85],"loss":[86],"landscapes":[87],"6":[89],"ML":[90],"models":[91],"with":[92],"more":[93],"than":[94],"11":[95],"configurations,":[97],"across":[98,132],"67":[99],"datasets":[100,133],"different":[102],"levels":[103],"fidelities.":[105],"We":[106,123,168],"reveal":[107],"first":[109],"unified,":[110],"comprehensive":[111],"portrait":[112],"their":[114],"topographies":[115],"terms":[117],"smoothness,":[119],"neutrality":[120],"modality.":[122],"also":[124],"show":[125],"that":[126,159],"such":[127],"properties":[128],"are":[129,150],"highly":[130],"transferable":[131],"fidelities,":[135],"providing":[136],"fundamental":[137,189],"evidence":[138],"multi-fidelity":[143],"transfer":[145],"methods.":[147],"These":[148],"findings":[149],"made":[151],"possible":[152],"developing":[154],"dedicated":[156],"FLA":[157],"framework":[158,175],"incorporates":[160],"combination":[162],"visual":[164],"quantitative":[166],"measures.":[167],"further":[169],"demonstrate":[170],"potential":[172],"analyzing":[177],"NAS-Bench-101":[179],"landscape,":[180],"believe":[183],"it":[184],"able":[186],"faciliate":[188],"broader":[193],"range":[194],"AutoML":[196],"tasks.":[197]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389072419","counts_by_year":[],"updated_date":"2024-12-09T23:16:56.813231","created_date":"2023-11-28"}