{"id":"https://openalex.org/W4387947245","doi":"https://doi.org/10.48550/arxiv.2310.15526","title":"Privacy Amplification for Matrix Mechanisms","display_name":"Privacy Amplification for Matrix Mechanisms","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387947245","doi":"https://doi.org/10.48550/arxiv.2310.15526"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.15526","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2310.15526","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063017186","display_name":"Christopher A. Choquette-Choo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Choquette-Choo, Christopher A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101151090","display_name":"Arun Ganesh","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ganesh, Arun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090438638","display_name":"Thomas Steinke","orcid":"https://orcid.org/0000-0002-0338-8042"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Steinke, Thomas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5008213441","display_name":"Abhradeep Thakurta","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Thakurta, Abhradeep","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11716","display_name":"Random Matrix Theory and Its Applications","score":0.9861,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.602195},{"id":"https://openalex.org/keywords/principal-component-analysis","display_name":"Principal Component Analysis","score":0.534988},{"id":"https://openalex.org/keywords/approximation-algorithms","display_name":"Approximation Algorithms","score":0.502325},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.43834984}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7082045},{"id":"https://openalex.org/C125112378","wikidata":"https://www.wikidata.org/wiki/Q176640","display_name":"Randomness","level":2,"score":0.60829324},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5207179},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.49675566},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.47292665},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.43834984},{"id":"https://openalex.org/C23130292","wikidata":"https://www.wikidata.org/wiki/Q5275358","display_name":"Differential privacy","level":2,"score":0.43231404},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36186165},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34375513},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3365218},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.327407},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.19108814},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.11579168},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.15526","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2310.15526","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.15526","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Partnerships for the goals","score":0.42,"id":"https://metadata.un.org/sdg/17"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W2536018345","https://openalex.org/W2358353312","https://openalex.org/W2353836703","https://openalex.org/W2296488620","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"Privacy":[0],"amplification":[1,69,143],"exploits":[2],"randomness":[3],"in":[4,21,55,81,94,157],"data":[5],"selection":[6],"to":[7,18,29,46,66,124,130,138,154],"provide":[8],"tighter":[9],"differential":[10],"privacy":[11,68],"(DP)":[12],"guarantees.":[13],"This":[14,34],"analysis":[15],"is":[16,25,35,78],"key":[17],"DP-SGD's":[19],"success":[20],"machine":[22],"learning,":[23],"but,":[24],"not":[26],"readily":[27],"applicable":[28],"the":[30,43,63,127,135,158],"newer":[31],"state-of-the-art":[32],"algorithms.":[33],"because":[36],"these":[37],"algorithms,":[38],"known":[39],"as":[40,54,88,103],"DP-FTRL,":[41],"use":[42,122],"matrix":[44,75],"mechanism":[45],"add":[47],"correlated":[48,92],"noise":[49,53,128,136],"instead":[50],"of":[51],"independent":[52],"DP-SGD.":[56],"In":[57],"this":[58],"paper,":[59],"we":[60,96,121,150],"propose":[61],"\"MMCC\",":[62],"first":[64],"algorithm":[65,144],"analyze":[67,91],"via":[70],"sampling":[71],"for":[72,161],"any":[73],"generic":[74],"mechanism.":[76],"MMCC":[77],"nearly":[79],"tight":[80],"that":[82,98,126],"it":[83,123,152],"approaches":[84],"a":[85],"lower":[86],"bound":[87],"$\\epsilon\\to0$.":[89],"To":[90],"outputs":[93],"MMCC,":[95],"prove":[97],"they":[99,105],"can":[100,132],"be":[101],"analyzed":[102],"if":[104],"were":[106],"independent,":[107],"by":[108],"conditioning":[109],"them":[110],"on":[111,164],"prior":[112],"outputs.":[113],"Our":[114,142],"\"conditional":[115],"composition":[116],"theorem\"":[117],"has":[118,146],"broad":[119],"utility:":[120,149],"show":[125,151],"added":[129,137],"binary-tree-DP-FTRL":[131],"asymptotically":[133],"match":[134],"DP-SGD":[139],"with":[140],"amplification.":[141],"also":[145],"practical":[147],"empirical":[148],"leads":[153],"significant":[155],"improvement":[156],"privacy-utility":[159],"trade-offs":[160],"DP-FTRL":[162],"algorithms":[163],"standard":[165],"benchmarks.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387947245","counts_by_year":[],"updated_date":"2024-10-09T04:52:33.853643","created_date":"2023-10-26"}