iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2310.09266
{"id":"https://openalex.org/W4387688061","doi":"https://doi.org/10.48550/arxiv.2310.09266","title":"User Inference Attacks on Large Language Models","display_name":"User Inference Attacks on Large Language Models","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387688061","doi":"https://doi.org/10.48550/arxiv.2310.09266"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.09266","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2310.09266","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5056645742","display_name":"Nikhil Kandpal","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kandpal, Nikhil","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016535318","display_name":"Krishna Pillutla","orcid":"https://orcid.org/0000-0002-1262-8466"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pillutla, Krishna","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035574749","display_name":"Alina Oprea","orcid":"https://orcid.org/0000-0002-4979-5292"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oprea, Alina","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064699160","display_name":"Peter Kairouz","orcid":"https://orcid.org/0000-0001-6897-5937"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kairouz, Peter","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063017186","display_name":"Christopher A. Choquette-Choo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Choquette-Choo, Christopher A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101283231","display_name":"Zheng Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Zheng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.836334,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9684,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9684,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Deep Learning Applications in Healthcare","score":0.9679,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence","score":0.9082,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/language-modeling","display_name":"Language Modeling","score":0.529931},{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.517145}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.718941},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6007997},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.41893694},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35652918}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.09266","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2310.09266","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.09266","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.55,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W3204019825","https://openalex.org/W2748952813","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Fine-tuning":[0],"is":[1],"a":[2,37,51,75,79,99,142,178],"common":[3],"and":[4,16,74,115,138,176],"effective":[5],"method":[6],"for":[7,56,61,162],"tailoring":[8],"large":[9,143],"language":[10],"models":[11],"(LLMs)":[12],"to":[13,70,95,124,152,181,198,201],"specialized":[14],"tasks":[15],"applications.":[17],"In":[18],"this":[19,33,207],"paper,":[20],"we":[21,35,113,158,194],"study":[22],"the":[23,71,86,118,146,182,196],"privacy":[24,208],"implications":[25],"of":[26,101,145,191],"fine-tuning":[27,87,102,147],"LLMs":[28,92,205],"on":[29,155],"user":[30,42,63,80,96,125,164,192],"data.":[31,184],"To":[32],"end,":[34],"consider":[36],"realistic":[38],"threat":[39],"model,":[40],"called":[41],"inference,":[43,126,193],"wherein":[44],"an":[45],"attacker":[46],"infers":[47],"whether":[48],"or":[49],"not":[50,83],"user's":[52,179],"data":[53,148],"was":[54],"used":[55],"fine-tuning.":[57],"We":[58,89],"design":[59],"attacks":[60],"performing":[62],"inference":[64,97,165],"that":[65,91,120,128,140],"require":[66],"only":[67],"black-box":[68],"access":[69],"fine-tuned":[72,204],"LLM":[73],"few":[76],"samples":[77],"from":[78,85],"which":[81],"need":[82,197],"be":[84],"dataset.":[88],"find":[90],"are":[93,149],"susceptible":[94,151],"across":[98],"variety":[100],"datasets,":[103],"at":[104],"times":[105],"with":[106,132,168],"near":[107],"perfect":[108],"attack":[109],"success":[110],"rates.":[111],"Further,":[112],"theoretically":[114],"empirically":[116],"investigate":[117],"properties":[119],"make":[121],"users":[122,131,139],"vulnerable":[123],"finding":[127],"outlier":[129],"users,":[130],"identifiable":[133],"shared":[134],"features":[135],"between":[136],"examples,":[137,175],"contribute":[141],"fraction":[144],"most":[150],"attack.":[153],"Based":[154],"these":[156,186],"findings,":[157],"identify":[159],"several":[160],"methods":[161,200],"mitigating":[163],"including":[166],"training":[167,183],"example-level":[169],"differential":[170],"privacy,":[171],"removing":[172],"within-user":[173],"duplicate":[174],"reducing":[177],"contribution":[180],"While":[185],"techniques":[187],"provide":[188],"partial":[189],"mitigation":[190],"highlight":[195],"develop":[199],"fully":[202],"protect":[203],"against":[206],"risk.":[209]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387688061","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-09T11:25:18.402127","created_date":"2023-10-17"}