iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2310.08287
{"id":"https://openalex.org/W4387635564","doi":"https://doi.org/10.48550/arxiv.2310.08287","title":"A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors","display_name":"A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387635564","doi":"https://doi.org/10.48550/arxiv.2310.08287"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.08287","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2310.08287","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5089362585","display_name":"Olivier Laurent","orcid":"https://orcid.org/0000-0001-8917-9390"},"institutions":[{"id":"https://openalex.org/I201181511","display_name":"\u00c9cole Nationale Sup\u00e9rieure de Techniques Avanc\u00e9es","ror":"https://ror.org/0309cs235","country_code":"FR","type":"education","lineage":["https://openalex.org/I201181511","https://openalex.org/I4210145102"]},{"id":"https://openalex.org/I277688954","display_name":"Universit\u00e9 Paris-Saclay","ror":"https://ror.org/03xjwb503","country_code":"FR","type":"education","lineage":["https://openalex.org/I277688954"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Laurent, Olivier","raw_affiliation_strings":["ENSTA Paris - \u00c9cole Nationale Sup\u00e9rieure de Techniques Avanc\u00e9es (828, boulevard des Mar\u00e9chaux 91762 Palaiseau Cedex - France)","Universit\u00e9 Paris-Saclay (B\u00e2timent Br\u00e9guet, 3 Rue Joliot Curie 2e \u00e9t, 91190 Gif-sur-Yvette - France)"],"affiliations":[{"raw_affiliation_string":"ENSTA Paris - \u00c9cole Nationale Sup\u00e9rieure de Techniques Avanc\u00e9es (828, boulevard des Mar\u00e9chaux 91762 Palaiseau Cedex - France)","institution_ids":["https://openalex.org/I201181511"]},{"raw_affiliation_string":"Universit\u00e9 Paris-Saclay (B\u00e2timent Br\u00e9guet, 3 Rue Joliot Curie 2e \u00e9t, 91190 Gif-sur-Yvette - France)","institution_ids":["https://openalex.org/I277688954"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074824334","display_name":"Emanuel Aldea","orcid":"https://orcid.org/0000-0001-7065-4809"},"institutions":[{"id":"https://openalex.org/I4210136613","display_name":"Laboratoire des syst\u00e8mes et applications des technologies de l'information et de l'\u00e9nergie","ror":"https://ror.org/03vam5b06","country_code":"FR","type":"facility","lineage":["https://openalex.org/I11559806","https://openalex.org/I124158823","https://openalex.org/I1294671590","https://openalex.org/I4210134562","https://openalex.org/I4210136613","https://openalex.org/I4210142324","https://openalex.org/I4210154111"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Aldea, Emanuel","raw_affiliation_strings":["SATIE - Syst\u00e8mes et Applications des Technologies de l'Information et de l'Energie (4 avenue des sciences, 91190, Gif-sur-Yvette - France)"],"affiliations":[{"raw_affiliation_string":"SATIE - Syst\u00e8mes et Applications des Technologies de l'Information et de l'Energie (4 avenue des sciences, 91190, Gif-sur-Yvette - France)","institution_ids":["https://openalex.org/I4210136613"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5013478881","display_name":"Gianni Franchi","orcid":"https://orcid.org/0000-0002-2184-1381"},"institutions":[],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Franchi, Gianni","raw_affiliation_strings":["U2IS - Unit\u00e9 d'Informatique et d'Ing\u00e9nierie des Syst\u00e8mes (828, boulevard des Mar\u00e9chaux, 91762 Palaiseau CEDEX - France)"],"affiliations":[{"raw_affiliation_string":"U2IS - Unit\u00e9 d'Informatique et d'Ing\u00e9nierie des Syst\u00e8mes (828, boulevard des Mar\u00e9chaux, 91762 Palaiseau CEDEX - France)","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.787004,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.5271204},{"id":"https://openalex.org/keywords/uncertainty-estimation","display_name":"Uncertainty Estimation","score":0.515415},{"id":"https://openalex.org/keywords/robust-learning","display_name":"Robust Learning","score":0.505142},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.44015598},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization (linguistics)","score":0.44012803}],"concepts":[{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.7092878},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67512256},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5949565},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.55047095},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52799845},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5271204},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.44015598},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.44012803},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41287944},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41006285},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.08287","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2310.08287","pdf_url":"http://arxiv.org/pdf/2310.08287","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://hal.science/hal-04480585","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2310.08287","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.08287","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.64}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W856257623","https://openalex.org/W4296209631","https://openalex.org/W4220659530","https://openalex.org/W3097449145","https://openalex.org/W2892315154","https://openalex.org/W2561617217","https://openalex.org/W2131935101","https://openalex.org/W2060045818","https://openalex.org/W2040227828","https://openalex.org/W2032094637"],"abstract_inverted_index":{"The":[0],"distribution":[1,42],"of":[2,5,34,39,43,81,114,117,134,162,177],"the":[3,35,40,61,66,69,79,84,91,104,115,127,131,143,146,157,163,170],"weights":[4],"modern":[6],"deep":[7,44],"neural":[8],"networks":[9],"(DNNs)":[10],"-":[11,18],"crucial":[12],"for":[13,64,89,102,138],"uncertainty":[14,75],"quantification":[15],"and":[16,56,74,86,120,148,180],"robustness":[17],"is":[19,136],"an":[20,111],"eminently":[21],"complex":[22],"object":[23],"due":[24],"to":[25,52,125,155],"its":[26,50],"extremely":[27],"high":[28],"dimensionality.":[29],"This":[30],"paper":[31],"proposes":[32],"one":[33],"first":[36,132,171],"large-scale":[37,172],"explorations":[38],"posterior":[41,72],"Bayesian":[45,128,164],"Neural":[46],"Networks":[47],"(BNNs),":[48],"expanding":[49],"study":[51],"real-world":[53,178],"vision":[54],"tasks":[55],"architectures.":[57],"Specifically,":[58],"we":[59,94,109,141,166],"investigate":[60],"optimal":[62],"approach":[63],"approximating":[65],"posterior,":[67,85,165],"analyze":[68],"connection":[70],"between":[71,145],"quality":[73],"quantification,":[76],"delve":[77],"into":[78],"impact":[80,116],"modes":[82],"on":[83],"explore":[87,142],"methods":[88],"visualizing":[90],"posterior.":[92,105,129],"Moreover,":[93],"uncover":[95],"weight-space":[96],"symmetries":[97,122],"as":[98],"a":[99],"critical":[100],"aspect":[101],"understanding":[103,161],"To":[106],"this":[107],"extent,":[108],"develop":[110],"in-depth":[112],"assessment":[113],"both":[118],"permutation":[119],"scaling":[121],"that":[123],"tend":[124],"obfuscate":[126],"While":[130],"type":[133],"transformation":[135],"known":[137],"duplicating":[139],"modes,":[140],"relationship":[144],"latter":[147],"L2":[149],"regularization,":[150],"challenging":[151],"previous":[152],"misconceptions.":[153],"Finally,":[154],"help":[156],"community":[158],"improve":[159],"our":[160,181],"will":[167],"shortly":[168],"release":[169],"checkpoint":[173],"dataset,":[174],"including":[175],"thousands":[176],"models":[179],"codes.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387635564","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-30T12:02:35.031300","created_date":"2023-10-14"}