iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2309.13002
{"id":"https://openalex.org/W4387031735","doi":"https://doi.org/10.48550/arxiv.2309.13002","title":"Expressive variational quantum circuits provide inherent privacy in federated learning","display_name":"Expressive variational quantum circuits provide inherent privacy in federated learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387031735","doi":"https://doi.org/10.48550/arxiv.2309.13002"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.13002","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.13002","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015195513","display_name":"Niraj Kumar","orcid":"https://orcid.org/0000-0002-7918-5188"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kumar, Niraj","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030228086","display_name":"Jamie Heredge","orcid":"https://orcid.org/0000-0003-2123-7026"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Heredge, Jamie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101541320","display_name":"Changhao Li","orcid":"https://orcid.org/0000-0002-3019-5887"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Changhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012742553","display_name":"Shaltiel Eloul","orcid":"https://orcid.org/0000-0002-5927-6349"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eloul, Shaltiel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052173319","display_name":"Shree Hari Sureshbabu","orcid":"https://orcid.org/0000-0002-6265-8268"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sureshbabu, Shree Hari","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5066501364","display_name":"Marco Pistoia","orcid":"https://orcid.org/0000-0001-9002-1128"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pistoia, Marco","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.836334,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10682","display_name":"Quantum Computing and Simulation","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":0.9907,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maxima-and-minima","display_name":"Maxima and minima","score":0.6863093},{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.598736},{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.535199}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76397693},{"id":"https://openalex.org/C186633575","wikidata":"https://www.wikidata.org/wiki/Q845060","display_name":"Maxima and minima","level":2,"score":0.6863093},{"id":"https://openalex.org/C84114770","wikidata":"https://www.wikidata.org/wiki/Q46344","display_name":"Quantum","level":2,"score":0.5446311},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.48471284},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4097007},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36688298},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34711665},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15128243},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.13002","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.13002","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.13002","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.65,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4246278799","https://openalex.org/W3188646203","https://openalex.org/W2909957174","https://openalex.org/W2375684291","https://openalex.org/W2354676191","https://openalex.org/W2105527480","https://openalex.org/W2052387497","https://openalex.org/W2050203848","https://openalex.org/W2050191802","https://openalex.org/W136674370"],"abstract_inverted_index":{"Federated":[0],"learning":[1,12,30,54,147,211],"has":[2],"emerged":[3],"as":[4],"a":[5,138,193,198],"viable":[6],"distributed":[7],"solution":[8],"to":[9,18,35,38,75,173,191],"train":[10],"machine":[11,132,210],"models":[13,31,212],"without":[14],"the":[15,22,42,46,92,96,105,115,144,152,165,169,174,202,206],"actual":[16],"need":[17],"share":[19],"data":[20,39,216],"with":[21,45,55,66,179],"central":[23],"aggregator.":[24],"However,":[25],"standard":[26],"neural":[27],"network-based":[28],"federated":[29,53,146,219],"have":[32],"been":[33],"shown":[34],"be":[36],"susceptible":[37],"leakage":[40,217],"from":[41],"gradients":[43,106],"shared":[44],"server.":[47],"In":[48],"this":[49],"work,":[50],"we":[51,129,156],"introduce":[52],"variational":[56],"quantum":[57,108,209],"circuit":[58],"model":[59,85,148,171],"built":[60],"using":[61],"expressive":[62,72,166],"encoding":[63],"maps":[64,73],"coupled":[65],"overparameterized":[67],"ans\\\"atze.":[68],"We":[69,110],"show":[70],"that":[71,162,205],"lead":[74],"inherent":[76,116],"privacy":[77,88],"against":[78],"gradient":[79],"inversion":[80],"attacks,":[81],"while":[82],"overparameterization":[83,142],"ensures":[84],"trainability.":[86],"Our":[87],"framework":[89],"centers":[90],"on":[91],"complexity":[93],"of":[94,98,107,164,208],"solving":[95,119],"system":[97],"high-degree":[99],"multivariate":[100],"Chebyshev":[101],"polynomials":[102],"generated":[103],"by":[104],"circuit.":[109],"present":[111],"compelling":[112],"arguments":[113,160],"highlighting":[114],"difficulty":[117],"in":[118,123,143,151,168,218],"these":[120],"equations,":[121],"both":[122],"exact":[124],"and":[125,136,149],"approximate":[126],"scenarios.":[127],"Additionally,":[128],"delve":[130],"into":[131],"learning-based":[133],"attack":[134,153,170],"strategies":[135],"establish":[137],"direct":[139],"connection":[140],"between":[141],"original":[145],"underparameterization":[150,163],"model.":[154],"Furthermore,":[155],"provide":[157],"numerical":[158],"scaling":[159],"showcasing":[161],"map":[167],"leads":[172],"loss":[175],"landscape":[176],"being":[177],"swamped":[178],"exponentially":[180],"many":[181],"spurious":[182],"local":[183],"minima":[184],"points,":[185],"thus":[186],"making":[187],"it":[188],"extremely":[189],"hard":[190],"realize":[192],"successful":[194],"attack.":[195],"This":[196],"provides":[197],"strong":[199],"claim,":[200],"for":[201],"first":[203],"time,":[204],"nature":[207],"inherently":[213],"helps":[214],"prevent":[215],"learning.":[220]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387031735","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-06T09:06:35.543425","created_date":"2023-09-26"}