iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2308.15005
{"id":"https://openalex.org/W4386346029","doi":"https://doi.org/10.48550/arxiv.2308.15005","title":"Few-Shot Object Detection via Synthetic Features with Optimal Transport","display_name":"Few-Shot Object Detection via Synthetic Features with Optimal Transport","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386346029","doi":"https://doi.org/10.48550/arxiv.2308.15005"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.15005","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2308.15005","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061549606","display_name":"Anh-Khoa Nguyen Vu","orcid":"https://orcid.org/0000-0003-3133-0259"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vu, Anh-Khoa Nguyen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025723803","display_name":"Thanh-Toan Do","orcid":"https://orcid.org/0000-0002-6249-0848"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Do, Thanh-Toan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054588832","display_name":"Vinh-Tiep Nguyen","orcid":"https://orcid.org/0000-0003-4260-7874"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nguyen, Vinh-Tiep","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090184417","display_name":"Tam Le","orcid":"https://orcid.org/0000-0003-1490-8506"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Le, Tam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053495766","display_name":"Minh\u2013Triet Tran","orcid":"https://orcid.org/0000-0003-3046-3041"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tran, Minh-Triet","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5022799473","display_name":"Tam Nguyen","orcid":"https://orcid.org/0000-0003-0236-7992"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nguyen, Tam V.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"Applications of Deep Learning in Medical Imaging","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.66519225},{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.65445924},{"id":"https://openalex.org/keywords/few-shot-learning","display_name":"Few-Shot Learning","score":0.626503},{"id":"https://openalex.org/keywords/object-detection","display_name":"Object Detection","score":0.5946},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5486631},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.536015},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.520398},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.517084},{"id":"https://openalex.org/keywords/base","display_name":"Base (topology)","score":0.5146469}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81380856},{"id":"https://openalex.org/C2780992000","wikidata":"https://www.wikidata.org/wiki/Q17016113","display_name":"Generator (circuit theory)","level":3,"score":0.72808343},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.66519225},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.65445924},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5486631},{"id":"https://openalex.org/C42058472","wikidata":"https://www.wikidata.org/wiki/Q810214","display_name":"Base (topology)","level":2,"score":0.5146469},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.49705604},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4911475},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.444334},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.4330957},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4226061},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.101484},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.062202245},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.15005","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.15005","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.15005","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4390721878","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Few-shot":[0],"object":[1,22],"detection":[2,23],"aims":[3],"to":[4,46,69,89,111,145,154],"simultaneously":[5],"localize":[6],"and":[7,174],"classify":[8],"the":[9,28,48,82,90,101,117,121,127,138,143,156,165,170,185,189,192],"objects":[10],"in":[11,55,63],"an":[12,159],"image":[13],"with":[14,137,158],"limited":[15],"training":[16,78],"samples.":[17],"However,":[18],"most":[19],"existing":[20],"few-shot":[21],"methods":[24],"focus":[25],"on":[26,81,149,179],"extracting":[27],"features":[29],"of":[30,34,92,104,120,172,191],"a":[31,60,67,79,113],"few":[32],"samples":[33],"novel":[35,61,74,83,93,131],"classes":[36,132],"that":[37,53,97,115,163,184],"lack":[38,91],"diversity.":[39],"Hence,":[40],"they":[41],"may":[42],"not":[43,86],"be":[44,197],"sufficient":[45],"capture":[47,146],"data":[49,72,118,136,147],"distribution.":[50],"To":[51,95,141],"address":[52],"limitation,":[54],"this":[56],"paper,":[57],"we":[58,65,99,152],"propose":[59,153],"approach":[62],"which":[64],"train":[66,112,155],"generator":[68,80,114,144,157],"generate":[70],"synthetic":[71,135,175],"for":[73],"classes.":[75,106],"Still,":[76],"directly":[77],"class":[84],"is":[85,110],"effective":[87],"due":[88],"data.":[94,176],"overcome":[96],"issue,":[98],"leverage":[100],"large-scale":[102],"dataset":[103],"base":[105,122,150],"Our":[107],"overarching":[108],"goal":[109],"captures":[116],"variations":[119,129,148],"dataset.":[123],"We":[124],"then":[125],"transform":[126],"captured":[128],"into":[130],"by":[133],"generating":[134],"trained":[139],"generator.":[140],"encourage":[142],"classes,":[151],"optimal":[160,166],"transport":[161,167],"loss":[162],"minimizes":[164],"distance":[168],"between":[169],"distributions":[171],"real":[173],"Extensive":[177],"experiments":[178],"two":[180],"benchmark":[181],"datasets":[182],"demonstrate":[183],"proposed":[186],"method":[187],"outperforms":[188],"state":[190],"art.":[193],"Source":[194],"code":[195],"will":[196],"available.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386346029","counts_by_year":[],"updated_date":"2024-10-11T05:31:21.705615","created_date":"2023-09-01"}