iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2308.03291
{"id":"https://openalex.org/W4385681722","doi":"https://doi.org/10.48550/arxiv.2308.03291","title":"SynJax: Structured Probability Distributions for JAX","display_name":"SynJax: Structured Probability Distributions for JAX","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385681722","doi":"https://doi.org/10.48550/arxiv.2308.03291"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.03291","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2308.03291","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074399519","display_name":"Milo\u0161 Stanojevi\u0107","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stanojevi\u0107, Milo\u0161","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5050190035","display_name":"Laurent Sartran","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sartran, Laurent","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9868,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9681,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/automatic-differentiation","display_name":"Automatic differentiation","score":0.5792782},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.45490986}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.820917},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.66845745},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.59222424},{"id":"https://openalex.org/C133512626","wikidata":"https://www.wikidata.org/wiki/Q787371","display_name":"Automatic differentiation","level":3,"score":0.5792782},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5069561},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49684814},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.48852646},{"id":"https://openalex.org/C43126263","wikidata":"https://www.wikidata.org/wiki/Q128751","display_name":"Source code","level":2,"score":0.4721615},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.45490986},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4535483},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.43361932},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42122582},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41948423},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3863087},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.32996604},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.03291","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2308.03291","pdf_url":"http://arxiv.org/pdf/2308.03291","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.03291","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.03291","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4230546540","https://openalex.org/W3211257750","https://openalex.org/W3122563667","https://openalex.org/W2553993726","https://openalex.org/W2163814182","https://openalex.org/W2077306381","https://openalex.org/W2039953621","https://openalex.org/W2026155714","https://openalex.org/W1718642889","https://openalex.org/W1543341614"],"abstract_inverted_index":{"The":[0,62,149],"development":[1],"of":[2,27,33,47,104],"deep":[3,48],"learning":[4,49],"software":[5],"libraries":[6],"enabled":[7],"significant":[8],"progress":[9],"in":[10,89,146],"the":[11,22,28,59,124,147],"field":[12],"by":[13,98,122],"allowing":[14],"users":[15],"to":[16,24,58,87],"focus":[17],"on":[18],"modeling,":[19],"while":[20],"letting":[21],"library":[23],"take":[25],"care":[26],"tedious":[29],"and":[30,73,116,131],"time-consuming":[31],"task":[32],"optimizing":[34],"execution":[35],"for":[36,67,107,128],"modern":[37],"hardware":[38],"accelerators.":[39],"However,":[40],"this":[41,96],"has":[42],"benefited":[43],"only":[44],"particular":[45],"types":[46],"models,":[50],"such":[51,70],"as":[52,71],"Transformers,":[53],"whose":[54],"primitives":[55],"map":[56],"easily":[57],"vectorized":[60,91,102],"computation.":[61],"models":[63,141],"that":[64,84,142],"explicitly":[65,143],"account":[66],"structured":[68,108],"objects,":[69],"trees":[72,115],"segmentations,":[74],"did":[75],"not":[76],"benefit":[77],"equally":[78],"because":[79],"they":[80],"require":[81],"custom":[82],"algorithms":[83,106,127],"are":[85],"difficult":[86],"implement":[88],"a":[90],"form.":[92],"SynJax":[93,135],"directly":[94],"addresses":[95],"problem":[97],"providing":[99],"an":[100],"efficient":[101],"implementation":[103],"inference":[105],"distributions":[109],"covering":[110],"alignment,":[111],"tagging,":[112],"segmentation,":[113],"constituency":[114],"spanning":[117],"trees.":[118],"This":[119],"is":[120,151],"done":[121],"exploiting":[123],"connection":[125],"between":[126],"automatic":[129],"differentiation":[130],"probabilistic":[132],"inference.":[133],"With":[134],"we":[136],"can":[137],"build":[138],"large-scale":[139],"differentiable":[140],"model":[144],"structure":[145],"data.":[148],"code":[150],"available":[152],"at":[153],"https://github.com/google-deepmind/synjax":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385681722","counts_by_year":[],"updated_date":"2024-12-07T05:34:07.855240","created_date":"2023-08-09"}