iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2306.09973
{"id":"https://openalex.org/W4381253557","doi":"https://doi.org/10.48550/arxiv.2306.09973","title":"Enhancing Fault Resilience of QNNs by Selective Neuron Splitting","display_name":"Enhancing Fault Resilience of QNNs by Selective Neuron Splitting","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4381253557","doi":"https://doi.org/10.48550/arxiv.2306.09973"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.09973","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2306.09973","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002269174","display_name":"Mohammad Hasan Ahmadilivani","orcid":"https://orcid.org/0000-0002-4162-6646"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ahmadilivani, Mohammad Hasan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101888888","display_name":"Mahdi Taheri","orcid":"https://orcid.org/0000-0001-5405-992X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Taheri, Mahdi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010286547","display_name":"Jaan Raik","orcid":"https://orcid.org/0000-0001-8113-020X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Raik, Jaan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063193249","display_name":"Masoud Daneshtalab","orcid":"https://orcid.org/0000-0001-6289-1521"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Daneshtalab, Masoud","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5059391257","display_name":"Maksim Jenihhin","orcid":"https://orcid.org/0000-0001-8165-9592"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jenihhin, Maksim","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11005","display_name":"Fault Tolerance in Electronic Systems","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11357","display_name":"Risk Analysis and Management","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/resilience","display_name":"Resilience (materials science)","score":0.7167924},{"id":"https://openalex.org/keywords/triple-modular-redundancy","display_name":"Triple modular redundancy","score":0.6553112},{"id":"https://openalex.org/keywords/vulnerability","display_name":"Vulnerability (computing)","score":0.601954},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.5831352},{"id":"https://openalex.org/keywords/error-detection","display_name":"Error Detection","score":0.547285},{"id":"https://openalex.org/keywords/fault-tolerance","display_name":"Fault Tolerance","score":0.530063},{"id":"https://openalex.org/keywords/soft-errors","display_name":"Soft Errors","score":0.527677},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.519126},{"id":"https://openalex.org/keywords/dynamic-safety-analysis","display_name":"Dynamic Safety Analysis","score":0.516448}],"concepts":[{"id":"https://openalex.org/C2779585090","wikidata":"https://www.wikidata.org/wiki/Q3457762","display_name":"Resilience (materials science)","level":2,"score":0.7167924},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7012821},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.6973123},{"id":"https://openalex.org/C63540848","wikidata":"https://www.wikidata.org/wiki/Q3140932","display_name":"Fault tolerance","level":2,"score":0.6772852},{"id":"https://openalex.org/C196371267","wikidata":"https://www.wikidata.org/wiki/Q3998979","display_name":"Triple modular redundancy","level":3,"score":0.6553112},{"id":"https://openalex.org/C101468663","wikidata":"https://www.wikidata.org/wiki/Q1620158","display_name":"Modular design","level":2,"score":0.6133345},{"id":"https://openalex.org/C95713431","wikidata":"https://www.wikidata.org/wiki/Q631425","display_name":"Vulnerability (computing)","level":2,"score":0.601954},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.5831352},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.57191086},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.5357674},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5217534},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.4570108},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.34608835},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28931814},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.11640814},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.08264765},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.07443848},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.09973","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.09973","pdf_url":"http://arxiv.org/pdf/2306.09973","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2306.09973","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.09973","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W58658798","https://openalex.org/W3114375939","https://openalex.org/W2797678940","https://openalex.org/W2759696718","https://openalex.org/W2359816675","https://openalex.org/W2153096481","https://openalex.org/W2152497502","https://openalex.org/W2148616436","https://openalex.org/W2102525122","https://openalex.org/W2000379092"],"abstract_inverted_index":{"The":[0,105,116],"superior":[1],"performance":[2],"of":[3,16,41,91,144],"Deep":[4],"Neural":[5,32],"Networks":[6,33],"(DNNs)":[7],"has":[8,127],"led":[9],"to":[10,37,49,65],"their":[11],"application":[12],"in":[13,97],"various":[14],"aspects":[15],"human":[17],"life.":[18],"Safety-critical":[19],"applications":[20],"are":[21,46],"no":[22],"exception":[23],"and":[24,114],"impose":[25],"rigorous":[26],"reliability":[27,50],"requirements":[28],"on":[29,70,111],"DNNs.":[30],"Quantized":[31],"(QNNs)":[34],"have":[35],"emerged":[36],"tackle":[38],"the":[39,82,89,98,120,125],"complexity":[40],"DNN":[42],"accelerators,":[43],"however,":[44],"they":[45],"more":[47],"prone":[48],"issues.":[51],"In":[52],"this":[53],"paper,":[54],"a":[55,71,77,92,128,133,141],"recent":[56],"analytical":[57],"resilience":[58],"assessment":[59],"method":[60,79,106,122],"is":[61,85,107],"adapted":[62],"for":[63,80,123],"QNNs":[64,113],"identify":[66],"critical":[67,83],"neurons":[68,84],"based":[69],"Neuron":[72],"Vulnerability":[73],"Factor":[74],"(NVF).":[75],"Thereafter,":[76],"novel":[78],"splitting":[81],"proposed":[86,121],"that":[87,119],"enables":[88],"design":[90],"Lightweight":[93],"Correction":[94],"Unit":[95],"(LCU)":[96],"accelerator":[99],"without":[100],"redesigning":[101],"its":[102],"computational":[103],"part.":[104],"validated":[108],"by":[109],"experiments":[110],"different":[112],"datasets.":[115],"results":[117],"demonstrate":[118],"correcting":[124],"faults":[126],"twice":[129],"smaller":[130],"overhead":[131],"than":[132],"selective":[134],"Triple":[135],"Modular":[136],"Redundancy":[137],"(TMR)":[138],"while":[139],"achieving":[140],"similar":[142],"level":[143],"fault":[145],"resiliency.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4381253557","counts_by_year":[],"updated_date":"2024-10-20T21:11:33.010173","created_date":"2023-06-20"}