{"id":"https://openalex.org/W4380136339","doi":"https://doi.org/10.48550/arxiv.2306.04952","title":"Entropy-based Training Methods for Scalable Neural Implicit Sampler","display_name":"Entropy-based Training Methods for Scalable Neural Implicit Sampler","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4380136339","doi":"https://doi.org/10.48550/arxiv.2306.04952"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2306.04952","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100527531","display_name":"Weijian Luo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Weijian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100609050","display_name":"Boya Zhang","orcid":"https://orcid.org/0009-0002-9826-5754"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Boya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100393609","display_name":"Zhihua Zhang","orcid":"https://orcid.org/0000-0002-6449-4332"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zhihua","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks in Image Processing","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9864,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.563281},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.522817},{"id":"https://openalex.org/keywords/semantic-segmentation","display_name":"Semantic Segmentation","score":0.515448},{"id":"https://openalex.org/keywords/model-compression","display_name":"Model Compression","score":0.506721},{"id":"https://openalex.org/keywords/kullback\u2013leibler-divergence","display_name":"Kullback\u2013Leibler divergence","score":0.4790886},{"id":"https://openalex.org/keywords/adaptive-sampling","display_name":"Adaptive sampling","score":0.45870268},{"id":"https://openalex.org/keywords/divergence","display_name":"Divergence (linguistics)","score":0.42871356}],"concepts":[{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.77755135},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70311886},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.59995466},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.5547708},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.485963},{"id":"https://openalex.org/C171752962","wikidata":"https://www.wikidata.org/wiki/Q255166","display_name":"Kullback\u2013Leibler divergence","level":2,"score":0.4790886},{"id":"https://openalex.org/C52740198","wikidata":"https://www.wikidata.org/wiki/Q1539564","display_name":"Importance sampling","level":3,"score":0.47536987},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.45967725},{"id":"https://openalex.org/C2781395549","wikidata":"https://www.wikidata.org/wiki/Q4680762","display_name":"Adaptive sampling","level":3,"score":0.45870268},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44080162},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.44056305},{"id":"https://openalex.org/C207390915","wikidata":"https://www.wikidata.org/wiki/Q1230525","display_name":"Divergence (linguistics)","level":2,"score":0.42871356},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.42515627},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.384161},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37606603},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.34602082},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15871492},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.14185253},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.04952","pdf_url":"http://arxiv.org/pdf/2306.04952","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2306.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2306.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.71,"display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4302573481","https://openalex.org/W4283077537","https://openalex.org/W3087071515","https://openalex.org/W3086697448","https://openalex.org/W2999603699","https://openalex.org/W2968689489","https://openalex.org/W2947536360","https://openalex.org/W2902858271","https://openalex.org/W2464065341","https://openalex.org/W1987558550"],"abstract_inverted_index":{"Efficiently":[0],"sampling":[1,169,177,184],"from":[2,28,33,178,185],"un-normalized":[3],"target":[4,94,151],"distributions":[5,30],"is":[6],"a":[7,49,83],"fundamental":[8],"problem":[9],"in":[10,191,234,252],"scientific":[11],"computing":[12],"and":[13,60,117,158,183,230],"machine":[14],"learning.":[15],"Traditional":[16],"approaches":[17],"like":[18],"Markov":[19],"Chain":[20],"Monte":[21],"Carlo":[22],"(MCMC)":[23],"guarantee":[24],"asymptotically":[25],"unbiased":[26],"samples":[27,76,95,200],"such":[29],"but":[31],"suffer":[32],"computational":[34,79],"inefficiency,":[35],"particularly":[36],"when":[37],"dealing":[38],"with":[39,77,171],"high-dimensional":[40,186,195],"targets,":[41,180],"as":[42],"they":[43],"require":[44],"numerous":[45],"iterations":[46],"to":[47,93,147,204],"generate":[48,72],"batch":[50],"of":[51,75,160,221],"samples.":[52],"In":[53],"this":[54,235,253],"paper,":[55],"we":[56,108,140,164],"propose":[57],"an":[58],"efficient":[59,243],"scalable":[61],"neural":[62,84,105,144,223],"implicit":[63,106,145],"sampler":[64,70,146,198],"that":[65,86,201,227],"overcomes":[66],"these":[67,137],"limitations.":[68],"Our":[69],"can":[71],"large":[73],"batches":[74],"low":[78],"costs":[80],"by":[81,207],"leveraging":[82],"transformation":[85],"directly":[87],"maps":[88],"easily":[89],"sampled":[90],"latent":[91],"vectors":[92],"without":[96],"the":[97,104,113,118,125,129,132,143,149,155,192,219,228,249],"need":[98],"for":[99,245],"iterative":[100],"procedures.":[101],"To":[102,153],"train":[103],"sampler,":[107],"introduce":[109],"two":[110],"novel":[111],"methods:":[112],"KL":[114],"training":[115,120,138],"method":[116],"Fisher":[119,133],"method.":[121],"The":[122],"former":[123],"minimizes":[124,131],"Kullback-Leibler":[126],"divergence,":[127],"while":[128,210],"latter":[130],"divergence.":[134],"By":[135],"employing":[136],"methods,":[139],"effectively":[141],"optimize":[142],"capture":[148],"desired":[150],"distribution.":[152],"demonstrate":[154],"effectiveness,":[156],"efficiency,":[157],"scalability":[159],"our":[161,197,222],"proposed":[162],"samplers,":[163],"evaluate":[165],"them":[166],"on":[167,241],"three":[168],"benchmarks":[170,175],"different":[172],"scales.":[173],"These":[174],"include":[176],"2D":[179],"Bayesian":[181],"inference,":[182],"energy-based":[187],"models":[188],"(EBMs).":[189],"Notably,":[190],"experiment":[193],"involving":[194],"EBMs,":[196],"produces":[199],"are":[202],"comparable":[203],"those":[205],"generated":[206],"MCMC-based":[208],"methods":[209],"being":[211],"more":[212,216],"than":[213],"100":[214],"times":[215],"efficient,":[217],"showcasing":[218],"efficiency":[220],"sampler.":[224],"We":[225],"believe":[226],"theoretical":[229],"empirical":[231],"contributions":[232],"presented":[233],"work":[236],"will":[237],"stimulate":[238],"further":[239],"research":[240],"developing":[242],"samplers":[244],"various":[246],"applications":[247],"beyond":[248],"ones":[250],"explored":[251],"study.":[254]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4380136339","counts_by_year":[],"updated_date":"2024-10-09T21:06:03.436425","created_date":"2023-06-10"}