iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2305.19391
{"id":"https://openalex.org/W4379087192","doi":"https://doi.org/10.48550/arxiv.2305.19391","title":"Deep Clustering with Incomplete Noisy Pairwise Annotations: A Geometric Regularization Approach","display_name":"Deep Clustering with Incomplete Noisy Pairwise Annotations: A Geometric Regularization Approach","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4379087192","doi":"https://doi.org/10.48550/arxiv.2305.19391"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19391","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.19391","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069396153","display_name":"Tri Q. Nguyen","orcid":"https://orcid.org/0000-0001-6475-0706"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nguyen, Tri","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005841750","display_name":"Shahana Ibrahim","orcid":"https://orcid.org/0000-0003-1951-5234"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ibrahim, Shahana","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5104126814","display_name":"Xiao Fu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fu, Xiao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.9916,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identifiability","display_name":"Identifiability","score":0.75542486},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization (linguistics)","score":0.58952117},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.582042},{"id":"https://openalex.org/keywords/dimensionality-reduction","display_name":"Dimensionality Reduction","score":0.555532},{"id":"https://openalex.org/keywords/spectral-clustering","display_name":"Spectral Clustering","score":0.548186},{"id":"https://openalex.org/keywords/change-detection","display_name":"Change Detection","score":0.535634},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.526959}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7744796},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.76733875},{"id":"https://openalex.org/C122770356","wikidata":"https://www.wikidata.org/wiki/Q1656753","display_name":"Identifiability","level":2,"score":0.75542486},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.68143386},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6292755},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.58952117},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.582042},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.48808253},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.46539176},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46105304},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37886143},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36199775},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32013386},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.12768808},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19391","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.19391","pdf_url":"http://arxiv.org/pdf/2305.19391","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.19391","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.19391","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4240568257","https://openalex.org/W2900187352","https://openalex.org/W2724847603","https://openalex.org/W2573470972","https://openalex.org/W2184661725","https://openalex.org/W2131038454","https://openalex.org/W2105626102","https://openalex.org/W2034041141","https://openalex.org/W1996342314","https://openalex.org/W112856298"],"abstract_inverted_index":{"The":[0,164],"recent":[1],"integration":[2],"of":[3,33,52,54,89,107],"deep":[4,80],"learning":[5,162],"and":[6,91],"pairwise":[7],"similarity":[8,35],"annotation-based":[9],"constrained":[10,15],"clustering":[11,42],"--":[12,18],"i.e.,":[13],"$\\textit{deep":[14],"clustering}$":[16],"(DCC)":[17],"has":[19],"proven":[20],"effective":[21],"for":[22],"incorporating":[23],"weak":[24],"supervision":[25],"into":[26,82],"massive":[27],"data":[28,108,152],"clustering:":[29],"Less":[30],"than":[31],"1%":[32],"pair":[34],"annotations":[36],"can":[37,154],"often":[38],"substantially":[39],"enhance":[40],"the":[41,100,105,151],"accuracy.":[43],"However,":[44],"beyond":[45],"empirical":[46],"successes,":[47],"there":[48],"is":[49,135,143,167],"a":[50,79,83,126],"lack":[51],"understanding":[53],"DCC.":[55],"In":[56],"addition,":[57],"many":[58],"DCC":[59,69,102],"paradigms":[60],"are":[61],"sensitive":[62],"to":[63,137,172],"annotation":[64,149],"noise,":[65],"but":[66],"performance-guaranteed":[67],"noisy":[68,140],"methods":[70],"have":[71],"been":[72],"largely":[73],"elusive.":[74],"This":[75],"work":[76],"first":[77],"takes":[78],"look":[81],"recently":[84],"emerged":[85],"logistic":[86,101],"loss":[87,103,128],"function":[88,129],"DCC,":[90],"characterizes":[92],"its":[93,118],"theoretical":[94],"properties.":[95],"Our":[96],"result":[97],"shows":[98],"that":[99,145],"ensures":[104],"identifiability":[106],"membership":[109,153],"under":[110,147,159],"reasonable":[111],"conditions,":[112],"which":[113],"may":[114],"shed":[115],"light":[116],"on":[117,131],"effectiveness":[119],"in":[120],"practice.":[121],"Building":[122],"upon":[123],"this":[124],"understanding,":[125],"new":[127],"based":[130],"geometric":[132],"factor":[133],"analysis":[134],"proposed":[136,161,165],"fend":[138],"against":[139],"annotations.":[141],"It":[142],"shown":[144],"even":[146],"$\\textit{unknown}$":[148],"confusions,":[150],"still":[155],"be":[156],"$\\textit{provably}$":[157],"identified":[158],"our":[160,174],"criterion.":[163],"approach":[166],"tested":[168],"over":[169],"multiple":[170],"datasets":[171],"validate":[173],"claims.":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4379087192","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-10-17T17:41:34.522255","created_date":"2023-06-02"}