{"id":"https://openalex.org/W4378713361","doi":"https://doi.org/10.48550/arxiv.2305.16494","title":"Diffusion-Based Adversarial Sample Generation for Improved Stealthiness and Controllability","display_name":"Diffusion-Based Adversarial Sample Generation for Improved Stealthiness and Controllability","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4378713361","doi":"https://doi.org/10.48550/arxiv.2305.16494"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.16494","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.16494","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103004403","display_name":"Haotian Xue","orcid":"https://orcid.org/0009-0006-4726-9498"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xue, Haotian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053106735","display_name":"Alexandre Araujo","orcid":"https://orcid.org/0000-0003-2220-5739"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Araujo, Alexandre","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100380066","display_name":"Bin Hu","orcid":"https://orcid.org/0000-0003-3514-5413"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Bin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5066940107","display_name":"Yongxin Chen","orcid":"https://orcid.org/0000-0002-1459-6365"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Yongxin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.999951,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":85,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9818,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9803,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/generative-adversarial-networks","display_name":"Generative Adversarial Networks","score":0.556759},{"id":"https://openalex.org/keywords/adversarial-examples","display_name":"Adversarial Examples","score":0.541787},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.510835},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.507342},{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.503673},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.48088554},{"id":"https://openalex.org/keywords/smoothness","display_name":"Smoothness","score":0.4741368}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.7677713},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70124775},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.54390633},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.48088554},{"id":"https://openalex.org/C102634674","wikidata":"https://www.wikidata.org/wiki/Q868473","display_name":"Smoothness","level":2,"score":0.4741368},{"id":"https://openalex.org/C48209547","wikidata":"https://www.wikidata.org/wiki/Q1331104","display_name":"Controllability","level":2,"score":0.4358258},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4123425},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40035003},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1920717},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18032417},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.12437689},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.16494","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.16494","pdf_url":"http://arxiv.org/pdf/2305.16494","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.16494","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.16494","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.53}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4239246781","https://openalex.org/W4205698120","https://openalex.org/W3201620972","https://openalex.org/W2561315646","https://openalex.org/W2542825942","https://openalex.org/W2332386680","https://openalex.org/W2248621902","https://openalex.org/W2164760767","https://openalex.org/W2036697162","https://openalex.org/W2003779889"],"abstract_inverted_index":{"Neural":[0],"networks":[1],"are":[2],"known":[3],"to":[4,7,16,90],"be":[5,24,103,170],"susceptible":[6],"adversarial":[8,72,86,125,134],"samples:":[9],"small":[10],"variations":[11],"of":[12,44,132],"natural":[13,45],"examples":[14],"crafted":[15],"deliberately":[17],"mislead":[18],"the":[19,40,91,130,153],"models.":[20],"While":[21],"they":[22,35],"can":[23,102],"easily":[25,104],"generated":[26,155],"using":[27,156],"gradient-based":[28,166],"techniques":[29],"in":[30,48,172],"digital":[31,111],"and":[32,53,115,147,161],"physical":[33],"scenarios,":[34],"often":[36],"differ":[37],"greatly":[38],"from":[39,136],"actual":[41],"data":[42,93],"distribution":[43,94],"images,":[46],"resulting":[47],"a":[49,60,76,80],"trade-off":[50],"between":[51],"strength":[52],"stealthiness.":[54],"In":[55],"this":[56],"paper,":[57],"we":[58,150],"propose":[59],"novel":[61],"framework":[62,101,128],"dubbed":[63],"Diffusion-Based":[64],"Projected":[65],"Gradient":[66],"Descent":[67],"(Diff-PGD)":[68],"for":[69,106,122],"generating":[70,123],"realistic":[71],"samples.":[73],"By":[74],"exploiting":[75],"gradient":[77],"guided":[78],"by":[79],"diffusion":[81],"model,":[82],"Diff-PGD":[83,157],"ensures":[84],"that":[85,152],"samples":[87,154],"remain":[88],"close":[89],"original":[92],"while":[95],"maintaining":[96],"their":[97],"effectiveness.":[98],"Moreover,":[99],"our":[100,127],"customized":[105],"specific":[107],"tasks":[108],"such":[109],"as":[110],"attacks,":[112,114],"physical-world":[113],"style-based":[116],"attacks.":[117],"Compared":[118],"with":[119],"existing":[120],"methods":[121],"natural-style":[124],"samples,":[126],"enables":[129],"separation":[131],"optimizing":[133],"loss":[135],"other":[137],"surrogate":[138],"losses":[139],"(e.g.,":[140],"content/smoothness/style":[141],"loss),":[142],"making":[143],"it":[144],"more":[145],"stable":[146],"controllable.":[148],"Finally,":[149],"demonstrate":[151],"have":[158],"better":[159],"transferability":[160],"anti-purification":[162],"power":[163],"than":[164],"traditional":[165],"methods.":[167],"Code":[168],"will":[169],"released":[171],"https://github.com/xavihart/Diff-PGD":[173]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4378713361","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-05T08:02:32.120838","created_date":"2023-05-30"}