{"id":"https://openalex.org/W4323555810","doi":"https://doi.org/10.48550/arxiv.2303.02255","title":"Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron","display_name":"Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4323555810","doi":"https://doi.org/10.48550/arxiv.2303.02255"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02255","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.02255","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102796060","display_name":"Jingfeng Wu","orcid":"https://orcid.org/0009-0009-3414-4487"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Jingfeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085848346","display_name":"Difan Zou","orcid":"https://orcid.org/0000-0002-6544-2593"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zou, Difan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082974417","display_name":"Zixiang Chen","orcid":"https://orcid.org/0000-0002-9042-4477"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Zixiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105423323","display_name":"Vladimir Braverman","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Braverman, Vladimir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051448391","display_name":"Quanquan Gu","orcid":"https://orcid.org/0000-0001-9830-793X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gu, Quanquan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5108381794","display_name":"Sham M. Kakade","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kakade, Sham M.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Network Fundamentals and Applications","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regression","display_name":"Regression","score":0.574514},{"id":"https://openalex.org/keywords/constant","display_name":"Constant (computer programming)","score":0.5518089},{"id":"https://openalex.org/keywords/incremental-learning","display_name":"Incremental Learning","score":0.529654},{"id":"https://openalex.org/keywords/backpropagation-learning","display_name":"Backpropagation Learning","score":0.519973},{"id":"https://openalex.org/keywords/recurrent-neural-networks","display_name":"Recurrent Neural Networks","score":0.508721},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.507899},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.45594132}],"concepts":[{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.66866267},{"id":"https://openalex.org/C2777027219","wikidata":"https://www.wikidata.org/wiki/Q1284190","display_name":"Constant (computer programming)","level":2,"score":0.5518089},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.537338},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.50017667},{"id":"https://openalex.org/C152361515","wikidata":"https://www.wikidata.org/wiki/Q181328","display_name":"Bernoulli's principle","level":2,"score":0.49961233},{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.4727681},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.46848404},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.45594132},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.42755544},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.42692885},{"id":"https://openalex.org/C41587187","wikidata":"https://www.wikidata.org/wiki/Q1501882","display_name":"Generalized linear model","level":2,"score":0.42329645},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3969881},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.3756877},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2812448},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27572888},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.22361279},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.14825636},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02255","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.02255","pdf_url":"http://arxiv.org/pdf/2303.02255","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.02255","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02255","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4298392611","https://openalex.org/W4254565718","https://openalex.org/W3094386089","https://openalex.org/W2899588557","https://openalex.org/W2180382450","https://openalex.org/W2129020938","https://openalex.org/W2123979461","https://openalex.org/W2082756648","https://openalex.org/W1858163257","https://openalex.org/W1619264321"],"abstract_inverted_index":{"This":[0],"paper":[1],"considers":[2],"the":[3,18,22,27,71,95,107,128,132,154],"problem":[4,150],"of":[5,29,94,135,143],"learning":[6],"a":[7,33,91,160,168],"single":[8],"ReLU":[9,15,51,97,121,186],"neuron":[10],"with":[11,123],"squared":[12],"loss":[13],"(a.k.a.,":[14],"regression)":[16],"in":[17,53,70,153,171],"overparameterized":[19],"regime,":[20],"where":[21],"input":[23],"dimension":[24],"can":[25,101,158],"exceed":[26],"number":[28],"samples.":[30],"We":[31],"analyze":[32],"Perceptron-type":[34],"algorithm":[35],"called":[36],"GLM-tron":[37,144,157,178],"(Kakade":[38],"et":[39],"al.,":[40],"2011)":[41],"and":[42,56,86,152],"provide":[43,75,90,111],"its":[44],"dimension-free":[45],"risk":[46,60,79,88,134,162,170],"upper":[47,85],"bounds":[48,61,89],"for":[49,82,115,120,148,184],"high-dimensional":[50,96,185],"regression":[52,98,122],"both":[54],"well-specified":[55,72],"misspecified":[57],"settings.":[58],"Our":[59,84],"recover":[62],"several":[63],"existing":[64],"results":[65,114,174],"as":[66],"special":[67],"cases.":[68],"Moreover,":[69],"setting,":[73],"we":[74,110],"an":[76],"instance-wise":[77],"matching":[78],"lower":[80,87],"bound":[81],"GLM-tron.":[83,105],"sharp":[92],"characterization":[93],"problems":[99],"that":[100,142,177],"be":[102,180],"learned":[103],"via":[104],"On":[106],"other":[108],"hand,":[109],"some":[112],"negative":[113],"stochastic":[116],"gradient":[117],"descent":[118],"(SGD)":[119],"symmetric":[124],"Bernoulli":[125],"data:":[126],"if":[127],"model":[129],"is":[130,137],"well-specified,":[131],"excess":[133],"SGD":[136,164,183],"provably":[138],"no":[139],"better":[140],"than":[141],"ignoring":[145],"constant":[146,169],"factors,":[147],"each":[149],"instance;":[151],"noiseless":[155],"case,":[156],"achieve":[159],"small":[161],"while":[163],"unavoidably":[165],"suffers":[166],"from":[167],"expectation.":[172],"These":[173],"together":[175],"suggest":[176],"might":[179],"preferable":[181],"to":[182],"regression.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4323555810","counts_by_year":[],"updated_date":"2024-10-17T17:30:45.859840","created_date":"2023-03-09"}