{"id":"https://openalex.org/W4311430291","doi":"https://doi.org/10.48550/arxiv.2212.05810","title":"Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Surface Meshes","display_name":"Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Surface Meshes","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4311430291","doi":"https://doi.org/10.48550/arxiv.2212.05810"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05810","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.05810","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062206865","display_name":"Sara Hahner","orcid":"https://orcid.org/0000-0002-6911-2663"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hahner, Sara","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035925311","display_name":"Felix Kerkhoff","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kerkhoff, Felix","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5068763843","display_name":"Jochen Garcke","orcid":"https://orcid.org/0000-0002-8334-3695"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Garcke, Jochen","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"Analysis of Three-Dimensional Shape Structures","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"Analysis of Three-Dimensional Shape Structures","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11595","display_name":"Science of Clothing Comfort and Textile Properties","score":0.9533,"subfield":{"id":"https://openalex.org/subfields/2507","display_name":"Polymers and Plastics"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.90139574},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.69981563},{"id":"https://openalex.org/keywords/mesh-deformation","display_name":"Mesh Deformation","score":0.574957},{"id":"https://openalex.org/keywords/mesh-segmentation","display_name":"Mesh Segmentation","score":0.568654},{"id":"https://openalex.org/keywords/surface-parameterization","display_name":"Surface Parameterization","score":0.545805},{"id":"https://openalex.org/keywords/texture-mapping","display_name":"Texture Mapping","score":0.538409},{"id":"https://openalex.org/keywords/point-set-surfaces","display_name":"Point Set Surfaces","score":0.527592},{"id":"https://openalex.org/keywords/volume-mesh","display_name":"Volume mesh","score":0.45451307}],"concepts":[{"id":"https://openalex.org/C31487907","wikidata":"https://www.wikidata.org/wiki/Q1154597","display_name":"Polygon mesh","level":2,"score":0.9524808},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.90139574},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.69981563},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6810814},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.678707},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.5781658},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5569729},{"id":"https://openalex.org/C2776799497","wikidata":"https://www.wikidata.org/wiki/Q484298","display_name":"Surface (topology)","level":2,"score":0.5369795},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5041584},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4707176},{"id":"https://openalex.org/C170589453","wikidata":"https://www.wikidata.org/wiki/Q7940896","display_name":"Volume mesh","level":4,"score":0.45451307},{"id":"https://openalex.org/C204366326","wikidata":"https://www.wikidata.org/wiki/Q3027650","display_name":"Deformation (meteorology)","level":2,"score":0.4343943},{"id":"https://openalex.org/C181145010","wikidata":"https://www.wikidata.org/wiki/Q4418033","display_name":"Mesh generation","level":3,"score":0.25922912},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.18780118},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1845949},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.15362999},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.105195105},{"id":"https://openalex.org/C135628077","wikidata":"https://www.wikidata.org/wiki/Q220184","display_name":"Finite element method","level":2,"score":0.10502133},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.066061795},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05810","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.05810","pdf_url":"http://arxiv.org/pdf/2212.05810","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.05810","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05810","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4294653043","https://openalex.org/W4221158809","https://openalex.org/W3106617480","https://openalex.org/W2752501457","https://openalex.org/W2387220787","https://openalex.org/W2187005362","https://openalex.org/W2171421712","https://openalex.org/W2017968036","https://openalex.org/W1995603760","https://openalex.org/W1601688333"],"abstract_inverted_index":{"The":[0,129],"underlying":[1],"dynamics":[2],"and":[3,65,120,194],"patterns":[4,31,176,207],"of":[5,24,32,62,125,177],"3D":[6],"surface":[7,48],"meshes":[8,49,61,134],"deforming":[9],"over":[10],"time":[11],"can":[12,45,199],"be":[13],"discovered":[14],"by":[15,35],"unsupervised":[16],"learning,":[17,37],"especially":[18],"autoencoders,":[19],"which":[20],"calculate":[21],"low-dimensional":[22],"embeddings":[23],"the":[25,29,84,87,122,126,169,183,190,203],"surfaces.":[26],"To":[27,90],"study":[28],"deformation":[30,123,175,206],"unseen":[33,133,157,178],"shapes":[34,158],"transfer":[36,153],"we":[38,93,198],"want":[39],"to":[40,69,73,83,142,189],"train":[41],"an":[42],"autoencoder":[43],"that":[44,145],"analyze":[46],"new":[47,53,74],"without":[50],"training":[51,88,119],"a":[52,95,110],"network.":[54,103],"Here,":[55],"most":[56],"state-of-the-art":[57,143],"autoencoders":[58,144,173],"cannot":[59],"handle":[60],"different":[63,136],"connectivity":[64],"therefore":[66],"have":[67,146],"limited":[68],"no":[70],"generalization":[71],"capacities":[72],"meshes.":[75],"Also,":[76],"reconstruction":[77,196],"errors":[78,85,155],"strongly":[79],"increase":[80],"in":[81,138],"comparison":[82],"for":[86,182],"shapes.":[89,151],"address":[91],"this,":[92],"propose":[94],"novel":[96,130],"spectral":[97],"CoSMA":[98],"(Convolutional":[99],"Semi-Regular":[100],"Mesh":[101],"Autoencoder)":[102],"This":[104],"patch-based":[105],"approach":[106,131],"is":[107],"combined":[108],"with":[109],"surface-aware":[111],"training.":[112],"It":[113],"reconstructs":[114,132],"surfaces":[115,204],"not":[116],"presented":[117],"during":[118],"generalizes":[121],"behavior":[124],"surfaces'":[127],"patches.":[128],"from":[135,164],"datasets":[137],"superior":[139],"quality":[140],"compared":[141],"been":[147],"trained":[148],"on":[149,156,168,202],"these":[150,205],"Our":[152],"learning":[154],"are":[159],"40%":[160],"lower":[161],"than":[162],"those":[163],"models":[165],"learned":[166],"directly":[167],"data.":[170],"Furthermore,":[171],"baseline":[172],"detect":[174],"mesh":[179],"sequences":[180],"only":[181],"whole":[184],"shape.":[185],"In":[186],"contrast,":[187],"due":[188],"employed":[191],"regional":[192],"patches":[193],"stable":[195],"quality,":[197],"localize":[200],"where":[201],"manifest.":[208]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311430291","counts_by_year":[],"updated_date":"2024-10-22T09:58:39.375759","created_date":"2022-12-26"}