{"id":"https://openalex.org/W4310827164","doi":"https://doi.org/10.48550/arxiv.2212.02042","title":"Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning","display_name":"Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310827164","doi":"https://doi.org/10.48550/arxiv.2212.02042"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.02042","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.02042","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5104198236","display_name":"Mingyuan Fan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Mingyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100622590","display_name":"Cen Chen","orcid":"https://orcid.org/0000-0003-1389-0148"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Cen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100373451","display_name":"Chengyu Wang","orcid":"https://orcid.org/0000-0003-1010-9678"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Chengyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066290139","display_name":"Wenmeng Zhou","orcid":"https://orcid.org/0000-0001-7120-5239"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Wenmeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059743923","display_name":"Jun Huang","orcid":"https://orcid.org/0000-0001-9207-8953"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Jun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058120371","display_name":"Ximeng Liu","orcid":"https://orcid.org/0000-0002-4238-3295"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Ximeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100643723","display_name":"Wenzhong Guo","orcid":"https://orcid.org/0000-0003-4118-8823"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Wenzhong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/upload","display_name":"Upload","score":0.74004924},{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.589281},{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.548344},{"id":"https://openalex.org/keywords/secure-computation","display_name":"Secure Computation","score":0.540143},{"id":"https://openalex.org/keywords/defenses","display_name":"Defenses","score":0.526995},{"id":"https://openalex.org/keywords/membership-inference-attacks","display_name":"Membership Inference Attacks","score":0.526254},{"id":"https://openalex.org/keywords/vulnerability","display_name":"Vulnerability (computing)","score":0.51311857},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.47982574},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.41707903}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7908018},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.77230465},{"id":"https://openalex.org/C71901391","wikidata":"https://www.wikidata.org/wiki/Q7126699","display_name":"Upload","level":2,"score":0.74004924},{"id":"https://openalex.org/C132964779","wikidata":"https://www.wikidata.org/wiki/Q2110223","display_name":"Raw data","level":2,"score":0.5358445},{"id":"https://openalex.org/C95713431","wikidata":"https://www.wikidata.org/wiki/Q631425","display_name":"Vulnerability (computing)","level":2,"score":0.51311857},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.47982574},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.4703351},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.41707903},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.39630887},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.36156553},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32888848},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09740919},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.02042","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.02042","pdf_url":"http://arxiv.org/pdf/2212.02042","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.02042","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.02042","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.49}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4200107511","https://openalex.org/W3207760230","https://openalex.org/W2972511296","https://openalex.org/W2906845177","https://openalex.org/W2891427086","https://openalex.org/W2536018345","https://openalex.org/W1968625315","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"Recent":[0],"works":[1],"have":[2,41,56],"brought":[3],"attention":[4],"to":[5,13,23,44,143],"the":[6,30,50,94,111,147,167,171,178,187,199],"vulnerability":[7],"of":[8,34,60,96,149,173,189,203],"Federated":[9],"Learning":[10],"(FL)":[11],"systems":[12],"gradient":[14,87],"leakage":[15],"attacks.":[16,209],"Such":[17],"attacks":[18],"exploit":[19],"clients'":[20,108,160,182],"uploaded":[21,51],"gradients":[22,112,148],"reconstruct":[24],"their":[25],"sensitive":[26],"data,":[27,110,161],"thereby":[28],"compromising":[29],"privacy":[31,133,168],"protection":[32,134],"capability":[33],"FL.":[35],"In":[36,74],"response,":[37],"various":[38],"defense":[39,201],"mechanisms":[40],"been":[42],"proposed":[43],"mitigate":[45],"this":[46,75,122],"threat":[47],"by":[48],"manipulating":[49],"gradients.":[52],"Unfortunately,":[53],"empirical":[54,192],"evaluations":[55,193],"demonstrated":[57],"limited":[58],"resilience":[59],"these":[61],"defenses":[62],"against":[63,207],"sophisticated":[64],"attacks,":[65],"indicating":[66],"an":[67],"urgent":[68],"need":[69],"for":[70,132],"more":[71],"effective":[72],"defenses.":[73],"paper,":[76],"we":[77,124],"explore":[78],"a":[79],"novel":[80],"defensive":[81],"paradigm":[82],"that":[83,127],"departs":[84],"from":[85,159],"conventional":[86],"perturbation":[88],"approaches":[89],"and":[90,135,156,191],"instead":[91],"focuses":[92],"on":[93,194],"construction":[95],"robust":[97,101,115,154,174],"data.":[98,183],"Intuitively,":[99],"if":[100],"data":[102,116,155,175],"exhibits":[103],"low":[104],"semantic":[105,179],"similarity":[106],"with":[107,114,153,181],"raw":[109],"associated":[113,152],"can":[117],"effectively":[118],"obfuscate":[119],"attackers.":[120],"To":[121],"end,":[123],"design":[125],"Refiner":[126,204],"jointly":[128],"optimizes":[129],"two":[130],"metrics":[131],"performance":[136],"maintenance.":[137],"The":[138],"utility":[139],"metric":[140,169],"is":[141],"designed":[142],"promote":[144],"consistency":[145],"between":[146],"key":[150],"parameters":[151],"those":[157],"derived":[158],"thus":[162],"maintaining":[163],"model":[164],"performance.":[165],"Furthermore,":[166],"guides":[170],"generation":[172],"towards":[176],"enlarging":[177],"gap":[180],"Theoretical":[184],"analysis":[185],"supports":[186],"effectiveness":[188,202],"Refiner,":[190],"multiple":[195],"benchmark":[196],"datasets":[197],"demonstrate":[198],"superior":[200],"at":[205],"defending":[206],"state-of-the-art":[208]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310827164","counts_by_year":[],"updated_date":"2024-12-05T07:25:25.509429","created_date":"2022-12-18"}