{"id":"https://openalex.org/W4310744151","doi":"https://doi.org/10.48550/arxiv.2212.00935","title":"Dunhuang murals contour generation network based on convolution and self-attention fusion","display_name":"Dunhuang murals contour generation network based on convolution and self-attention fusion","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310744151","doi":"https://doi.org/10.48550/arxiv.2212.00935"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.00935","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.00935","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078390055","display_name":"Baokai Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Baokai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114059367","display_name":"Fengjie He","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Fengjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009770587","display_name":"Shiqiang Du","orcid":"https://orcid.org/0000-0002-9787-186X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Shiqiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023183330","display_name":"Kaiwu Zhang","orcid":"https://orcid.org/0009-0007-3666-852X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Kaiwu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100420050","display_name":"Jianhua Wang","orcid":"https://orcid.org/0000-0003-0560-2556"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jianhua","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11666","display_name":"Color Constancy and Colorimetry","score":0.9243,"subfield":{"id":"https://openalex.org/subfields/3107","display_name":"Atomic and Molecular Physics, and Optics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11666","display_name":"Color Constancy and Colorimetry","score":0.9243,"subfield":{"id":"https://openalex.org/subfields/3107","display_name":"Atomic and Molecular Physics, and Optics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Multispectral and Hyperspectral Image Fusion","score":0.9208,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11144","display_name":"Melanin Pigmentation in Mammalian Skin","score":0.9206,"subfield":{"id":"https://openalex.org/subfields/1307","display_name":"Cell Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.64302135},{"id":"https://openalex.org/keywords/image-fusion","display_name":"Image Fusion","score":0.475968},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.46256953},{"id":"https://openalex.org/keywords/mural","display_name":"Mural","score":0.4624695},{"id":"https://openalex.org/keywords/inpainting","display_name":"Inpainting","score":0.41058272}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6919482},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6909677},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.64302135},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.61216885},{"id":"https://openalex.org/C193536780","wikidata":"https://www.wikidata.org/wiki/Q1513153","display_name":"Edge detection","level":4,"score":0.48895538},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.46256953},{"id":"https://openalex.org/C2777420470","wikidata":"https://www.wikidata.org/wiki/Q219423","display_name":"Mural","level":3,"score":0.4624695},{"id":"https://openalex.org/C2780719617","wikidata":"https://www.wikidata.org/wiki/Q1030752","display_name":"Salient","level":2,"score":0.43093812},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.42614853},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.41715044},{"id":"https://openalex.org/C11727466","wikidata":"https://www.wikidata.org/wiki/Q1628157","display_name":"Inpainting","level":3,"score":0.41058272},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.3690359},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3654996},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3179499},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.27242494},{"id":"https://openalex.org/C205783811","wikidata":"https://www.wikidata.org/wiki/Q11629","display_name":"Painting","level":2,"score":0.22695443},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.21113566},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.20587596},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1668148},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.00935","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.00935","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.00935","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.81,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2610116579","https://openalex.org/W2477619790","https://openalex.org/W2380775572","https://openalex.org/W2371159815","https://openalex.org/W2244018504","https://openalex.org/W2231338183","https://openalex.org/W2213520135","https://openalex.org/W2156165022","https://openalex.org/W2152310777","https://openalex.org/W1929133083"],"abstract_inverted_index":{"Dunhuang":[0,33,64,70,162,242],"murals":[1,34,55,71],"are":[2,35],"a":[3,12,147,171,192],"collection":[4],"of":[5,32,54,57,63,69,82,113,119,140,161],"Chinese":[6],"style":[7],"and":[8,22,25,38,46,110,175,185,233],"national":[9],"style,":[10],"forming":[11],"self-contained":[13],"Chinese-style":[14],"Buddhist":[15],"art.":[16],"It":[17,40],"has":[18],"very":[19,251],"high":[20],"historical":[21],"cultural":[23],"value":[24],"research":[26,62],"significance.":[27],"Among":[28],"them,":[29],"the":[30,42,51,61,108,117,120,241],"lines":[31],"highly":[36],"general":[37],"expressive.":[39],"reflects":[41],"character's":[43],"distinctive":[44],"character":[45],"complex":[47],"inner":[48],"emotions.":[49],"Therefore,":[50],"outline":[52,138],"drawing":[53],"is":[56,78,127,180,199,219,228],"great":[58],"significance":[59],"to":[60,73,86,135,157,182,201,230],"Culture.":[65],"The":[66],"contour":[67,89],"generation":[68],"belongs":[72],"image":[74,103],"edge":[75,104,149,167,205,235],"detection,":[76],"which":[77],"an":[79],"important":[80],"branch":[81],"computer":[83],"vision,":[84],"aims":[85],"extract":[87],"salient":[88],"information":[90,126,207],"in":[91,102,188],"images.":[92,114],"Although":[93],"convolution-based":[94],"deep":[95,212],"learning":[96],"networks":[97],"have":[98],"achieved":[99],"good":[100],"results":[101],"extraction":[105,197],"by":[106],"exploring":[107],"contextual":[109],"semantic":[111],"features":[112,187],"However,":[115],"with":[116,155,165,215],"enlargement":[118],"receptive":[121],"field,":[122],"some":[123],"local":[124,184],"detail":[125],"lost.":[128],"This":[129],"makes":[130],"it":[131,218],"impossible":[132],"for":[133],"them":[134],"generate":[136,158,231],"reasonable":[137],"drawings":[139,160],"murals.":[141,163],"In":[142,237],"this":[143],"paper,":[144],"we":[145],"propose":[146],"novel":[148,193],"detector":[150],"based":[151],"on":[152,221,240],"self-attention":[153,174],"combined":[154],"convolution":[156,176],"line":[159],"Compared":[164,214],"existing":[166,216],"detection":[168],"methods,":[169,217],"firstly,":[170],"new":[172],"residual":[173],"mixed":[177],"module":[178],"(Ramix)":[179],"proposed":[181],"fuse":[183],"global":[186],"feature":[189,206],"maps.":[190,236],"Secondly,":[191],"densely":[194],"connected":[195],"backbone":[196],"network":[198],"designed":[200],"efficiently":[202],"propagate":[203],"rich":[204],"from":[208],"shallow":[209],"layers":[210],"into":[211],"layers.":[213],"shown":[220],"different":[222],"public":[223],"datasets":[224],"that":[225,246],"our":[226,247],"method":[227,248],"able":[229],"sharper":[232],"richer":[234],"addition,":[238],"testing":[239],"mural":[243],"dataset":[244],"shows":[245],"can":[249],"achieve":[250],"competitive":[252],"performance.":[253]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310744151","counts_by_year":[],"updated_date":"2024-10-25T22:34:54.737648","created_date":"2022-12-17"}