{"id":"https://openalex.org/W4293819641","doi":"https://doi.org/10.48550/arxiv.2208.13643","title":"A Variance-Reduced Stochastic Gradient Tracking Algorithm for Decentralized Optimization with Orthogonality Constraints","display_name":"A Variance-Reduced Stochastic Gradient Tracking Algorithm for Decentralized Optimization with Orthogonality Constraints","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4293819641","doi":"https://doi.org/10.48550/arxiv.2208.13643"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.13643","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://arxiv.org/abs/2208.13643","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100436071","display_name":"Lei Wang","orcid":"https://orcid.org/0000-0003-0651-6262"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Lei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100352274","display_name":"Xin Liu","orcid":"https://orcid.org/0000-0002-8272-9553"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Xin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9772,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10249","display_name":"Distributed Multi-Agent Coordination and Control","score":0.9639,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/orthogonality","display_name":"Orthogonality","score":0.8576603},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.6651988},{"id":"https://openalex.org/keywords/convex-optimization","display_name":"Convex Optimization","score":0.614838},{"id":"https://openalex.org/keywords/orthogonal-matching-pursuit","display_name":"Orthogonal Matching Pursuit","score":0.604896},{"id":"https://openalex.org/keywords/distributed-optimization","display_name":"Distributed Optimization","score":0.577727},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.57644},{"id":"https://openalex.org/keywords/large-scale-optimization","display_name":"Large-Scale Optimization","score":0.541216}],"concepts":[{"id":"https://openalex.org/C17137986","wikidata":"https://www.wikidata.org/wiki/Q215067","display_name":"Orthogonality","level":2,"score":0.8576603},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.6651988},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.59995127},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5617549},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.51276356},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.46267316},{"id":"https://openalex.org/C137836250","wikidata":"https://www.wikidata.org/wiki/Q984063","display_name":"Optimization problem","level":2,"score":0.45772466},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.43019435},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.36216584},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.1220915},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.13643","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://doi.org/10.3934/jimo.2023018","pdf_url":"https://www.aimsciences.org/data/article/export-pdf?id=63f6b6058fccdf49cd46dbc9","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.13643","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.13643","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4293819641","https://openalex.org/W4321795558"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W834942123","https://openalex.org/W4232542516","https://openalex.org/W3176637561","https://openalex.org/W2993249520","https://openalex.org/W2095582735","https://openalex.org/W2059318893","https://openalex.org/W1967331680","https://openalex.org/W1965698851","https://openalex.org/W1587967017","https://openalex.org/W130629949"],"abstract_inverted_index":{"Decentralized":[0],"optimization":[1,36,99],"with":[2,74,100],"orthogonality":[3,16,63,101],"constraints":[4,17,102],"is":[5,21,93],"found":[6],"widely":[7],"in":[8,120],"scientific":[9],"computing":[10],"and":[11,47,107],"data":[12],"science.":[13],"Since":[14],"the":[15,31,42,62,75,87,94,112],"are":[18],"nonconvex,":[19],"it":[20],"quite":[22],"challenging":[23],"to":[24,37,82],"design":[25],"efficient":[26],"algorithms.":[27],"Existing":[28],"approaches":[29],"leverage":[30],"geometric":[32],"tools":[33],"from":[34],"Riemannian":[35],"solve":[38],"this":[39,52],"problem":[40],"at":[41],"cost":[43],"of":[44,78,89],"high":[45],"sample":[46],"communication":[48,108],"complexities.":[49],"To":[50,86],"relieve":[51],"difficulty,":[53],"based":[54],"on":[55],"two":[56],"novel":[57],"techniques":[58],"that":[59,103],"can":[60],"waive":[61],"constraints,":[64],"we":[65],"propose":[66],"a":[67,83,117,121],"variance-reduced":[68],"stochastic":[69],"gradient":[70],"tracking":[71],"(VRSGT)":[72],"algorithm":[73,96],"convergence":[76],"rate":[77],"$O(1":[79],"/":[80],"k)$":[81],"stationary":[84],"point.":[85],"best":[88],"our":[90],"knowledge,":[91],"VRSGT":[92,115],"first":[95],"for":[97],"decentralized":[98],"reduces":[104],"both":[105],"sampling":[106],"complexities":[109],"simultaneously.":[110],"In":[111],"numerical":[113],"experiments,":[114],"has":[116],"promising":[118],"performance":[119],"real-world":[122],"autonomous":[123],"driving":[124],"application.":[125]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4293819641","counts_by_year":[],"updated_date":"2024-10-22T13:26:18.071387","created_date":"2022-08-31"}