iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.48550/ARXIV.2205.00498
{"id":"https://openalex.org/W4309969094","doi":"https://doi.org/10.48550/arxiv.2205.00498","title":"CUP: Curriculum Learning based Prompt Tuning for Implicit Event Argument Extraction","display_name":"CUP: Curriculum Learning based Prompt Tuning for Implicit Event Argument Extraction","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4309969094","doi":"https://doi.org/10.48550/arxiv.2205.00498"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.00498","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.00498","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002847471","display_name":"Jiaju Lin","orcid":"https://orcid.org/0000-0001-6988-7568"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Jiaju","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100362863","display_name":"Qin Chen","orcid":"https://orcid.org/0000-0002-5602-1877"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Qin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100620306","display_name":"Jie Zhou","orcid":"https://orcid.org/0000-0001-7701-234X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Jie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101678706","display_name":"Jian Jin","orcid":"https://orcid.org/0000-0003-4250-1519"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jin, Jian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100317921","display_name":"Liang He","orcid":"https://orcid.org/0000-0003-4826-629X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Liang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.642673,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10260","display_name":"Empirical Studies in Software Engineering","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Automatic Keyword Extraction from Textual Data","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/argument","display_name":"Argument (complex analysis)","score":0.66107357},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.59472203},{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.526528},{"id":"https://openalex.org/keywords/named-entity-recognition","display_name":"Named Entity Recognition","score":0.500032}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80226284},{"id":"https://openalex.org/C98184364","wikidata":"https://www.wikidata.org/wiki/Q1780131","display_name":"Argument (complex analysis)","level":2,"score":0.66107357},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.59472203},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5552047},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5119692},{"id":"https://openalex.org/C19768560","wikidata":"https://www.wikidata.org/wiki/Q320727","display_name":"Dependency (UML)","level":2,"score":0.50301427},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.47441217},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45685083},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.4456669},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.42380732},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.41625845},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.4156876},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.39162725},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.26747078},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.00498","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.00498","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.00498","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.77,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Implicit":[0],"event":[1],"argument":[2],"extraction":[3],"(EAE)":[4],"aims":[5],"to":[6,61,92,122,144],"identify":[7],"arguments":[8,25,110],"that":[9],"could":[10],"scatter":[11],"over":[12],"the":[13,21,27,31,62,93,96,106,112,135,141,146,158,169],"document.":[14],"Most":[15],"previous":[16],"work":[17],"focuses":[18],"on":[19,48,152],"learning":[20,73,85,142],"direct":[22],"relations":[23,33,94],"between":[24,109],"and":[26,111,175],"given":[28],"trigger,":[29],"while":[30],"implicit":[32,81],"with":[34,95,140],"long-range":[35,107],"dependency":[36,108],"are":[37,89,138],"not":[38],"well":[39,104],"studied.":[40],"Moreover,":[41],"recent":[42],"neural":[43],"network":[44],"based":[45,74],"approaches":[46],"rely":[47],"a":[49,71,100,118],"large":[50],"amount":[51],"of":[52,161],"labeled":[53],"data":[54],"for":[55,148],"training,":[56],"which":[57,79,103],"is":[58],"unavailable":[59],"due":[60],"high":[63],"labelling":[64],"cost.":[65],"In":[66,114,165],"this":[67],"paper,":[68],"we":[69,116,167],"propose":[70],"Curriculum":[72],"Prompt":[75],"tuning":[76],"(CUP)":[77],"approach,":[78],"resolves":[80],"EAE":[82],"by":[83],"four":[84],"stages.":[86],"The":[87],"stages":[88],"defined":[90],"according":[91],"trigger":[97],"node":[98],"in":[99,131,172],"semantic":[101],"graph,":[102],"captures":[105],"trigger.":[113],"addition,":[115],"integrate":[117],"prompt-based":[119],"encoder-decoder":[120],"model":[121],"elicit":[123],"related":[124],"knowledge":[125],"from":[126],"pre-trained":[127],"language":[128],"models":[129,171],"(PLMs)":[130],"each":[132],"stage,":[133],"where":[134],"prompt":[136],"templates":[137],"adapted":[139],"progress":[143],"enhance":[145],"reasoning":[147],"arguments.":[149],"Experimental":[150],"results":[151],"two":[153],"well-known":[154],"benchmark":[155],"datasets":[156],"show":[157],"great":[159],"advantages":[160],"our":[162],"proposed":[163],"approach.":[164],"particular,":[166],"outperform":[168],"state-of-the-art":[170],"both":[173],"fully-supervised":[174],"low-data":[176],"scenarios.":[177]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309969094","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-02T11:53:10.454201","created_date":"2022-11-30"}