{"id":"https://openalex.org/W4390976733","doi":"https://doi.org/10.3390/s24020617","title":"A 3D Point Cloud Classification Method Based on Adaptive Graph Convolution and Global Attention","display_name":"A 3D Point Cloud Classification Method Based on Adaptive Graph Convolution and Global Attention","publication_year":2024,"publication_date":"2024-01-18","ids":{"openalex":"https://openalex.org/W4390976733","doi":"https://doi.org/10.3390/s24020617","pmid":"https://pubmed.ncbi.nlm.nih.gov/38257709"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24020617","pdf_url":"https://www.mdpi.com/1424-8220/24/2/617/pdf?version=1705571269","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/24/2/617/pdf?version=1705571269","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113098782","display_name":"Yaowei Yue","orcid":null},"institutions":[{"id":"https://openalex.org/I53592917","display_name":"Jiangxi Normal University","ror":"https://ror.org/05nkgk822","country_code":"CN","type":"education","lineage":["https://openalex.org/I53592917"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yaowei Yue","raw_affiliation_strings":["School of Computer and Information Engineering, JiangXi Normal Universtity, Nanchang 330224, China"],"affiliations":[{"raw_affiliation_string":"School of Computer and Information Engineering, JiangXi Normal Universtity, Nanchang 330224, China","institution_ids":["https://openalex.org/I53592917"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089012958","display_name":"Xiaonan Li","orcid":"https://orcid.org/0000-0002-4193-143X"},"institutions":[{"id":"https://openalex.org/I4210119674","display_name":"East China University of Technology","ror":"https://ror.org/027385r44","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210119674"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaonan Li","raw_affiliation_strings":["School of Information Engineering, East China University of Technology, Nanchang 330013, China"],"affiliations":[{"raw_affiliation_string":"School of Information Engineering, East China University of Technology, Nanchang 330013, China","institution_ids":["https://openalex.org/I4210119674"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085942352","display_name":"Yun Peng","orcid":"https://orcid.org/0000-0002-8163-267X"},"institutions":[{"id":"https://openalex.org/I53592917","display_name":"Jiangxi Normal University","ror":"https://ror.org/05nkgk822","country_code":"CN","type":"education","lineage":["https://openalex.org/I53592917"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yun Peng","raw_affiliation_strings":["School of Computer and Information Engineering, JiangXi Normal Universtity, Nanchang 330224, China"],"affiliations":[{"raw_affiliation_string":"School of Computer and Information Engineering, JiangXi Normal Universtity, Nanchang 330224, China","institution_ids":["https://openalex.org/I53592917"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5113098782"],"corresponding_institution_ids":["https://openalex.org/I53592917"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"fwci":8.981,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.999858,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"24","issue":"2","first_page":"617","last_page":"617"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"Analysis of Three-Dimensional Shape Structures","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"Analysis of Three-Dimensional Shape Structures","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Geospatial Modelling Techniques","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Mapping Forests with Lidar Remote Sensing","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.61398816},{"id":"https://openalex.org/keywords/point-clouds","display_name":"Point Clouds","score":0.553872},{"id":"https://openalex.org/keywords/point-set-surfaces","display_name":"Point Set Surfaces","score":0.531006},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5184843}],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.924937},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67761135},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.61398816},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5856687},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.5707375},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5184843},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.48507205},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43031684},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38814208},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.35308832},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3430799},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.26749116},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18582135},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.08810833},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24020617","pdf_url":"https://www.mdpi.com/1424-8220/24/2/617/pdf?version=1705571269","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154494","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://doi.org/10.20944/preprints202311.1956.v1","pdf_url":"https://www.preprints.org/manuscript/202311.1956/v1/download","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/38257709","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s24020617","pdf_url":"https://www.mdpi.com/1424-8220/24/2/617/pdf?version=1705571269","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W2560609797","https://openalex.org/W2752782242","https://openalex.org/W2810240468","https://openalex.org/W2922509574","https://openalex.org/W2960986959","https://openalex.org/W2962826786","https://openalex.org/W2963017945","https://openalex.org/W2963035165","https://openalex.org/W2963057320","https://openalex.org/W2963509914","https://openalex.org/W2963966654","https://openalex.org/W2964228567","https://openalex.org/W2964253930","https://openalex.org/W2979750740","https://openalex.org/W2980535048","https://openalex.org/W2981199548","https://openalex.org/W3011148091","https://openalex.org/W3034317823","https://openalex.org/W3035398346","https://openalex.org/W3041331580","https://openalex.org/W3102970498","https://openalex.org/W3162137573","https://openalex.org/W4212831793","https://openalex.org/W4296311988","https://openalex.org/W4376105083","https://openalex.org/W4380629088","https://openalex.org/W4385245566","https://openalex.org/W4386076097","https://openalex.org/W4386083138"],"related_works":["https://openalex.org/W4389574804","https://openalex.org/W39961996","https://openalex.org/W3150655618","https://openalex.org/W3108295644","https://openalex.org/W3088721469","https://openalex.org/W3016928466","https://openalex.org/W2936725271","https://openalex.org/W2626737336","https://openalex.org/W2295788148","https://openalex.org/W1578717197"],"abstract_inverted_index":{"In":[0],"recent":[1],"years,":[2],"there":[3],"has":[4,56],"been":[5],"significant":[6],"growth":[7],"in":[8,59,66,166,171],"the":[9,23,108,118,130,161,175],"ubiquity":[10],"and":[11,47,70,96,146,169],"popularity":[12],"of":[13,25,64,104],"three-dimensional":[14],"(3D)":[15],"point":[16,27,34,44,51,68,88,131,139],"clouds,":[17,35],"with":[18],"an":[19],"increasing":[20],"focus":[21],"on":[22,93,138,174],"classification":[24,90],"3D":[26,67,87],"clouds.":[28,52],"To":[29],"extract":[30,126],"richer":[31],"features":[32,77,128,136],"from":[33,75,129,153],"many":[36],"researchers":[37],"have":[38],"turned":[39],"their":[40],"attention":[41,95,112],"to":[42,61,125,144],"various":[43],"set":[45],"regions":[46,63],"channels":[48],"within":[49],"irregular":[50],"However,":[53],"this":[54,82],"approach":[55],"limited":[57],"capability":[58],"attending":[60],"crucial":[62],"interest":[65],"clouds":[69],"may":[71],"overlook":[72],"valuable":[73],"information":[74],"neighboring":[76],"during":[78],"feature":[79],"aggregation.":[80],"Therefore,":[81],"paper":[83],"proposes":[84],"a":[85],"novel":[86],"cloud":[89],"method":[91,102],"based":[92,137],"global":[94,127],"adaptive":[97,122,142],"graph":[98,123],"convolution":[99,124],"(Att-AdaptNet).":[100],"The":[101],"consists":[103],"two":[105],"main":[106],"branches:":[107],"first":[109],"branch":[110,120],"computes":[111],"masks":[113],"for":[114],"each":[115],"point,":[116],"while":[117],"second":[119],"employs":[121],"set.":[132],"It":[133],"dynamically":[134],"learns":[135],"interactions,":[140],"generating":[141],"kernels":[143],"effectively":[145],"precisely":[147],"capture":[148],"diverse":[149],"relationships":[150],"among":[151],"points":[152],"different":[154],"semantic":[155],"parts.":[156],"Experimental":[157],"results":[158],"demonstrate":[159],"that":[160],"proposed":[162],"model":[163],"achieves":[164],"93.8%":[165],"overall":[167],"accuracy":[168,173],"90.8%":[170],"average":[172],"ModeNet40":[176],"dataset.":[177]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390976733","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2024-10-17T12:50:10.071722","created_date":"2024-01-19"}