{"id":"https://openalex.org/W4381827290","doi":"https://doi.org/10.3390/s23104667","title":"Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI","display_name":"Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI","publication_year":2023,"publication_date":"2023-05-11","ids":{"openalex":"https://openalex.org/W4381827290","doi":"https://doi.org/10.3390/s23104667","pmid":"https://pubmed.ncbi.nlm.nih.gov/37430583"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23104667","pdf_url":"https://www.mdpi.com/1424-8220/23/10/4667/pdf?version=1683806137","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1424-8220/23/10/4667/pdf?version=1683806137","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003153967","display_name":"Mara Pistellato","orcid":"https://orcid.org/0000-0001-6273-290X"},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Mara Pistellato","raw_affiliation_strings":["Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Universit\u00e0 Ca\u2019Foscari di Venezia, Via Torino 155, 30170 Venezia, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Universit\u00e0 Ca\u2019Foscari di Venezia, Via Torino 155, 30170 Venezia, Italy","institution_ids":["https://openalex.org/I149461666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077880230","display_name":"Filippo Bergamasco","orcid":"https://orcid.org/0000-0001-6668-1556"},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Filippo Bergamasco","raw_affiliation_strings":["Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Universit\u00e0 Ca\u2019Foscari di Venezia, Via Torino 155, 30170 Venezia, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Universit\u00e0 Ca\u2019Foscari di Venezia, Via Torino 155, 30170 Venezia, Italy","institution_ids":["https://openalex.org/I149461666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004990026","display_name":"Gianluca Bigaglia","orcid":"https://orcid.org/0000-0001-7089-7632"},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Gianluca Bigaglia","raw_affiliation_strings":["Dipartimento di Management, Universit\u00e0 Ca\u2019Foscari di Venezia, Cannaregio 873, 30121 Venezia, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Management, Universit\u00e0 Ca\u2019Foscari di Venezia, Cannaregio 873, 30121 Venezia, Italy","institution_ids":["https://openalex.org/I149461666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065647549","display_name":"Andrea Gasparetto","orcid":"https://orcid.org/0000-0003-4986-0442"},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Andrea Gasparetto","raw_affiliation_strings":["Dipartimento di Management, Universit\u00e0 Ca\u2019Foscari di Venezia, Cannaregio 873, 30121 Venezia, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Management, Universit\u00e0 Ca\u2019Foscari di Venezia, Cannaregio 873, 30121 Venezia, Italy","institution_ids":["https://openalex.org/I149461666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030155299","display_name":"Andrea Albarelli","orcid":"https://orcid.org/0000-0002-3659-5099"},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Andrea Albarelli","raw_affiliation_strings":["Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Universit\u00e0 Ca\u2019Foscari di Venezia, Via Torino 155, 30170 Venezia, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Universit\u00e0 Ca\u2019Foscari di Venezia, Via Torino 155, 30170 Venezia, Italy","institution_ids":["https://openalex.org/I149461666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062258338","display_name":"Marco Antonio Boschetti","orcid":"https://orcid.org/0000-0002-8712-115X"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco Boschetti","raw_affiliation_strings":["Covision Lab SCARL, Via Durst 4, 39042 Bressanone, Italy"],"affiliations":[{"raw_affiliation_string":"Covision Lab SCARL, Via Durst 4, 39042 Bressanone, Italy","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5020920533","display_name":"Roberto Passerone","orcid":"https://orcid.org/0000-0001-6315-1023"},"institutions":[{"id":"https://openalex.org/I193223587","display_name":"University of Trento","ror":"https://ror.org/05trd4x28","country_code":"IT","type":"education","lineage":["https://openalex.org/I193223587"]}],"countries":["IT"],"is_corresponding":true,"raw_author_name":"Roberto Passerone","raw_affiliation_strings":["Dipartimento di Ingegneria e Scienza dell'Informazione (DISI), University of Trento, Via Sommarive 9, 38123 Trento, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Ingegneria e Scienza dell'Informazione (DISI), University of Trento, Via Sommarive 9, 38123 Trento, Italy","institution_ids":["https://openalex.org/I193223587"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5020920533"],"corresponding_institution_ids":["https://openalex.org/I193223587"],"apc_list":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"apc_paid":{"value":2400,"currency":"CHF","value_usd":2598,"provenance":"doaj"},"fwci":0.651,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.588886,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":86},"biblio":{"volume":"23","issue":"10","first_page":"4667","last_page":"4667"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11992","display_name":"CMOS Image Sensor Technology","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.533837},{"id":"https://openalex.org/keywords/neuromorphic-computing","display_name":"Neuromorphic Computing","score":0.512519}],"concepts":[{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.80173916},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7853062},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.6123196},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.564469},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5092927},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.48347026},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.4781557},{"id":"https://openalex.org/C21442007","wikidata":"https://www.wikidata.org/wiki/Q1027879","display_name":"Graphics","level":2,"score":0.4778516},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.45050457},{"id":"https://openalex.org/C157764524","wikidata":"https://www.wikidata.org/wiki/Q1383412","display_name":"Throughput","level":3,"score":0.42599136},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41395205},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.41336662},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35164934},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.34370244},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.251566},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.0},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23104667","pdf_url":"https://www.mdpi.com/1424-8220/23/10/4667/pdf?version=1683806137","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/10278/5023760","pdf_url":"https://iris.unive.it/bitstream/10278/5023760/1/sensors-23-04667.pdf","source":{"id":"https://openalex.org/S4306402336","display_name":"ARCA (Universit\u00e0 Ca' Foscari Venezia)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I149461666","host_organization_name":"Ca' Foscari University of Venice","host_organization_lineage":["https://openalex.org/I149461666"],"host_organization_lineage_names":["Ca' Foscari University of Venice"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222267","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37430583","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/s23104667","pdf_url":"https://www.mdpi.com/1424-8220/23/10/4667/pdf?version=1683806137","source":{"id":"https://openalex.org/S101949793","display_name":"Sensors","issn_l":"1424-8220","issn":["1424-8220"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.52,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W1560965780","https://openalex.org/W1902934009","https://openalex.org/W2140027210","https://openalex.org/W2475840367","https://openalex.org/W2564755587","https://openalex.org/W2766165671","https://openalex.org/W2793869710","https://openalex.org/W2807961551","https://openalex.org/W2886851211","https://openalex.org/W2897374890","https://openalex.org/W2915614342","https://openalex.org/W2935524202","https://openalex.org/W2945146780","https://openalex.org/W2950656546","https://openalex.org/W2962697884","https://openalex.org/W2963122961","https://openalex.org/W2963382930","https://openalex.org/W2964233199","https://openalex.org/W2970960767","https://openalex.org/W2988451558","https://openalex.org/W2989707080","https://openalex.org/W3004543888","https://openalex.org/W3046125599","https://openalex.org/W3093502740","https://openalex.org/W3117961507","https://openalex.org/W3137707937","https://openalex.org/W3157110934","https://openalex.org/W3157721836","https://openalex.org/W3161063006","https://openalex.org/W3170113470","https://openalex.org/W3173866016","https://openalex.org/W3176483701","https://openalex.org/W3203277956","https://openalex.org/W3206824631","https://openalex.org/W3216999207","https://openalex.org/W4206135700","https://openalex.org/W4210628486","https://openalex.org/W4211229341","https://openalex.org/W4220816781","https://openalex.org/W4220827132","https://openalex.org/W4221127793","https://openalex.org/W4226153740","https://openalex.org/W4285821802","https://openalex.org/W4292513155","https://openalex.org/W4293210321","https://openalex.org/W4294170315","https://openalex.org/W4316659414"],"related_works":["https://openalex.org/W4200391368","https://openalex.org/W3214410901","https://openalex.org/W3204400881","https://openalex.org/W3204296682","https://openalex.org/W3183118997","https://openalex.org/W3042736233","https://openalex.org/W2917767146","https://openalex.org/W2210979487","https://openalex.org/W2111241003","https://openalex.org/W2074043759"],"abstract_inverted_index":{"Over":[0],"the":[1,11,60,65,69,78,179,185,196,203,207,210,214,218,223,276,281,286],"past":[2],"few":[3],"years,":[4],"several":[5],"applications":[6,74],"have":[7],"been":[8],"extensively":[9],"exploiting":[10],"advantages":[12],"of":[13,27,37,64,80,108,112,115,194,206,225,228,241,275,320,334],"deep":[14],"learning,":[15],"in":[16,34,294,314,343],"particular":[17],"when":[18],"using":[19,49],"convolutional":[20],"neural":[21],"networks":[22,278],"(CNNs).":[23],"The":[24,154,270,307],"intrinsic":[25],"flexibility":[26],"such":[28],"models":[29],"makes":[30],"them":[31],"widely":[32],"adopted":[33],"a":[35,106,123,159,168,174,238,242,249,318,331],"variety":[36],"practical":[38],"applications,":[39],"from":[40,95],"medical":[41],"to":[42,127,135,148,157,177,200,280,312],"industrial.":[43],"In":[44,101,217],"this":[45,102,226],"latter":[46],"scenario,":[47],"however,":[48],"consumer":[50],"Personal":[51],"Computer":[52],"(PC)":[53],"hardware":[54,150,236,327,348],"is":[55,91,156,187,300,310],"not":[56,188],"always":[57],"suitable":[58],"for":[59,88,151,171,256,266,288,291],"potential":[61],"harsh":[62],"conditions":[63],"working":[66,118,231],"environment":[67],"and":[68,97,145,173,209,237,258,260,264,268,297],"strict":[70],"timing":[71],"that":[72,299],"industrial":[73],"typically":[75],"have.":[76],"Therefore,":[77],"design":[79],"custom":[81,116,346],"FPGA":[82,149,308],"(Field":[83],"Programmable":[84],"Gate":[85],"Array)":[86],"solutions":[87],"network":[89,109],"inference":[90],"gaining":[92],"massive":[93],"attention":[94],"researchers":[96],"companies":[98],"as":[99,167,293],"well.":[100],"paper,":[103],"we":[104,221],"propose":[105],"family":[107],"architectures":[110],"composed":[111],"three":[113],"kinds":[114],"layers":[117,132],"with":[119,122,325,345],"integer":[120],"arithmetic":[121],"customizable":[124],"precision":[125],"(down":[126],"just":[128],"two":[129],"bits).":[130],"Such":[131],"are":[133],"designed":[134],"be":[136],"effectively":[137],"trained":[138],"on":[139,233,248],"classical":[140,234],"GPUs":[141],"(Graphics":[142],"Processing":[143],"Units)":[144],"then":[146],"synthesized":[147],"real-time":[152],"inference.":[153],"idea":[155],"provide":[158],"trainable":[160],"quantization":[161],"layer,":[162],"called":[163],"Requantizer,":[164],"acting":[165],"both":[166,202,232],"non-linear":[169,204],"activation":[170],"neurons":[172],"value":[175],"rescaler":[176],"match":[178],"desired":[180],"bit":[181],"precision.":[182,216],"This":[183],"way,":[184],"training":[186,257],"only":[189],"quantization-aware,":[190],"but":[191],"also":[192],"capable":[193],"estimating":[195],"optimal":[197],"scaling":[198],"coefficients":[199],"accommodate":[201],"nature":[205],"activations":[208],"constraints":[211],"imposed":[212],"by":[213],"limited":[215],"experimental":[219],"section,":[220],"test":[222],"performance":[224,298],"kind":[227],"model":[229],"while":[230,329],"PC":[235],"case-study":[239],"implementation":[240,309],"signal":[243],"peak":[244,304],"detection":[245,305],"device":[246],"running":[247],"real":[250,315],"FPGA.":[251],"We":[252],"employ":[253],"TensorFlow":[254],"Lite":[255],"comparison,":[259],"use":[261],"Xilinx":[262],"FPGAs":[263],"Vivado":[265],"synthesis":[267],"implementation.":[269],"results":[271],"show":[272],"an":[273],"accuracy":[274],"quantized":[277],"close":[279],"floating":[282],"point":[283],"version,":[284],"without":[285],"need":[287],"representative":[289],"data":[290],"calibration":[292],"other":[295],"approaches,":[296],"better":[301],"than":[302],"dedicated":[303],"algorithms.":[306],"able":[311],"run":[313],"time":[316],"at":[317],"rate":[319],"four":[321],"gigapixels":[322],"per":[323,339,341],"second":[324,340],"moderate":[326],"resources,":[328],"achieving":[330],"sustained":[332],"efficiency":[333],"0.5":[335],"TOPS/W":[336],"(tera":[337],"operations":[338],"watt),":[342],"line":[344],"integrated":[347],"accelerators.":[349]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4381827290","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-11-23T20:57:35.112857","created_date":"2023-06-24"}