iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.3390/A15110398
{"id":"https://openalex.org/W4307635210","doi":"https://doi.org/10.3390/a15110398","title":"Deep Learning Classification of Colorectal Lesions Based on Whole Slide Images","display_name":"Deep Learning Classification of Colorectal Lesions Based on Whole Slide Images","publication_year":2022,"publication_date":"2022-10-27","ids":{"openalex":"https://openalex.org/W4307635210","doi":"https://doi.org/10.3390/a15110398"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/a15110398","pdf_url":"https://www.mdpi.com/1999-4893/15/11/398/pdf?version=1666866380","source":{"id":"https://openalex.org/S190629608","display_name":"Algorithms","issn_l":"1999-4893","issn":["1999-4893"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.mdpi.com/1999-4893/15/11/398/pdf?version=1666866380","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103026736","display_name":"Sergey Soldatov","orcid":"https://orcid.org/0009-0003-9576-2648"},"institutions":[{"id":"https://openalex.org/I137534880","display_name":"Southern Federal University","ror":"https://ror.org/01tv9ph92","country_code":"RU","type":"education","lineage":["https://openalex.org/I137534880"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Sergey A. Soldatov","raw_affiliation_strings":["The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia"],"affiliations":[{"raw_affiliation_string":"The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia","institution_ids":["https://openalex.org/I137534880"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071829172","display_name":"D. M. Pashkov","orcid":"https://orcid.org/0000-0002-6107-4762"},"institutions":[{"id":"https://openalex.org/I137534880","display_name":"Southern Federal University","ror":"https://ror.org/01tv9ph92","country_code":"RU","type":"education","lineage":["https://openalex.org/I137534880"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Danil M. Pashkov","raw_affiliation_strings":["Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, 344090 Rostov-on-Don, Russia","The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia"],"affiliations":[{"raw_affiliation_string":"The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia","institution_ids":["https://openalex.org/I137534880"]},{"raw_affiliation_string":"Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, 344090 Rostov-on-Don, Russia","institution_ids":["https://openalex.org/I137534880"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065855550","display_name":"\u0421. \u0410. \u0413\u0443\u0434\u0430","orcid":"https://orcid.org/0000-0002-2398-1847"},"institutions":[{"id":"https://openalex.org/I137534880","display_name":"Southern Federal University","ror":"https://ror.org/01tv9ph92","country_code":"RU","type":"education","lineage":["https://openalex.org/I137534880"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Sergey A. Guda","raw_affiliation_strings":["Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, 344090 Rostov-on-Don, Russia","The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia"],"affiliations":[{"raw_affiliation_string":"The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia","institution_ids":["https://openalex.org/I137534880"]},{"raw_affiliation_string":"Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, 344090 Rostov-on-Don, Russia","institution_ids":["https://openalex.org/I137534880"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052749092","display_name":"N.S. Karnaukhov","orcid":"https://orcid.org/0000-0003-0889-2720"},"institutions":[{"id":"https://openalex.org/I4210087337","display_name":"Moscow Clinical Scientific Center","ror":"https://ror.org/000wnz761","country_code":"RU","type":"facility","lineage":["https://openalex.org/I4210087337"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Nikolay S. Karnaukhov","raw_affiliation_strings":["Moscow Clinical Scientific Center n.a. A.S. Loginov, 111123 Moscow, Russia"],"affiliations":[{"raw_affiliation_string":"Moscow Clinical Scientific Center n.a. A.S. Loginov, 111123 Moscow, Russia","institution_ids":["https://openalex.org/I4210087337"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047279545","display_name":"Alexander A. Guda","orcid":"https://orcid.org/0000-0002-6941-4987"},"institutions":[{"id":"https://openalex.org/I137534880","display_name":"Southern Federal University","ror":"https://ror.org/01tv9ph92","country_code":"RU","type":"education","lineage":["https://openalex.org/I137534880"]}],"countries":["RU"],"is_corresponding":true,"raw_author_name":"Alexander A. Guda","raw_affiliation_strings":["The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia"],"affiliations":[{"raw_affiliation_string":"The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia","institution_ids":["https://openalex.org/I137534880"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078713692","display_name":"\u0410. \u0412. \u0421\u043e\u043b\u0434\u0430\u0442\u043e\u0432","orcid":"https://orcid.org/0000-0001-8411-0546"},"institutions":[{"id":"https://openalex.org/I137534880","display_name":"Southern Federal University","ror":"https://ror.org/01tv9ph92","country_code":"RU","type":"education","lineage":["https://openalex.org/I137534880"]}],"countries":["RU"],"is_corresponding":false,"raw_author_name":"Alexander V. Soldatov","raw_affiliation_strings":["The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia"],"affiliations":[{"raw_affiliation_string":"The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia","institution_ids":["https://openalex.org/I137534880"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5047279545"],"corresponding_institution_ids":["https://openalex.org/I137534880"],"apc_list":{"value":1400,"currency":"CHF","value_usd":1515,"provenance":"doaj"},"apc_paid":{"value":1400,"currency":"CHF","value_usd":1515,"provenance":"doaj"},"fwci":0.814,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.751268,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":84},"biblio":{"volume":"15","issue":"11","first_page":"398","last_page":"398"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"Deep Learning in Medical Image Analysis","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"Deep Learning in Medical Image Analysis","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics in Medical Imaging Analysis","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10552","display_name":"Global Trends in Colorectal Cancer Research","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/digital-pathology","display_name":"Digital pathology","score":0.5928275},{"id":"https://openalex.org/keywords/whole-slide-imaging","display_name":"Whole Slide Imaging","score":0.577199},{"id":"https://openalex.org/keywords/cancer-imaging","display_name":"Cancer Imaging","score":0.539995},{"id":"https://openalex.org/keywords/medical-image-analysis","display_name":"Medical Image Analysis","score":0.535124},{"id":"https://openalex.org/keywords/colonoscopy","display_name":"Colonoscopy","score":0.526122},{"id":"https://openalex.org/keywords/computer-aided-detection","display_name":"Computer-Aided Detection","score":0.523459},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.46542805}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.81927454},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.80447745},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6940257},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.67314464},{"id":"https://openalex.org/C2777522853","wikidata":"https://www.wikidata.org/wiki/Q5276128","display_name":"Digital pathology","level":2,"score":0.5928275},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5911289},{"id":"https://openalex.org/C58471807","wikidata":"https://www.wikidata.org/wiki/Q327120","display_name":"Receiver operating characteristic","level":2,"score":0.57448965},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5530397},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47493607},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.46542805},{"id":"https://openalex.org/C526805850","wikidata":"https://www.wikidata.org/wiki/Q188874","display_name":"Colorectal cancer","level":3,"score":0.43087637},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38683742},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.3220519},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.21282336},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.08948052},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/a15110398","pdf_url":"https://www.mdpi.com/1999-4893/15/11/398/pdf?version=1666866380","source":{"id":"https://openalex.org/S190629608","display_name":"Algorithms","issn_l":"1999-4893","issn":["1999-4893"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/1f2188b4b0b8455a95fc04a555b7bfbe","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3390/a15110398","pdf_url":"https://www.mdpi.com/1999-4893/15/11/398/pdf?version=1666866380","source":{"id":"https://openalex.org/S190629608","display_name":"Algorithms","issn_l":"1999-4893","issn":["1999-4893"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310310987","host_organization_name":"Multidisciplinary Digital Publishing Institute","host_organization_lineage":["https://openalex.org/P4310310987"],"host_organization_lineage_names":["Multidisciplinary Digital Publishing Institute"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Good health and well-being","score":0.86,"id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W2165698076","https://openalex.org/W2194775991","https://openalex.org/W2395611524","https://openalex.org/W2470965540","https://openalex.org/W2592929672","https://openalex.org/W2618530766","https://openalex.org/W2765982206","https://openalex.org/W2768673271","https://openalex.org/W2886789853","https://openalex.org/W2917732756","https://openalex.org/W2919115771","https://openalex.org/W2923287877","https://openalex.org/W2963129226","https://openalex.org/W2971066862","https://openalex.org/W2980072096","https://openalex.org/W2980073683","https://openalex.org/W2981841914","https://openalex.org/W2983868555","https://openalex.org/W3004016611","https://openalex.org/W3021413349","https://openalex.org/W3040848982","https://openalex.org/W3047228909","https://openalex.org/W3081006013","https://openalex.org/W3081981736","https://openalex.org/W3087147917","https://openalex.org/W3099319035","https://openalex.org/W3113328935","https://openalex.org/W3136950372","https://openalex.org/W3141984075","https://openalex.org/W3153436803","https://openalex.org/W3165730810","https://openalex.org/W3166114613"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4287760213","https://openalex.org/W4226493464","https://openalex.org/W3216067289","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3034642336","https://openalex.org/W3029198973","https://openalex.org/W2940055329"],"abstract_inverted_index":{"Microscopic":[0],"tissue":[1],"analysis":[2],"is":[3],"the":[4,14,20,52,69,77,108,125,132,150,175,186,192,219],"key":[5],"diagnostic":[6,220],"method":[7,134],"needed":[8],"for":[9,107,138],"disease":[10],"identification":[11],"and":[12,35,45,62,127,135,141,145,210,222],"choosing":[13],"best":[15],"treatment":[16],"regimen.":[17],"According":[18],"to":[19,50,89,148,164,170,226],"Global":[21],"Cancer":[22],"Observatory,":[23],"approximately":[24],"two":[25],"million":[26],"people":[27],"are":[28],"diagnosed":[29],"with":[30],"colorectal":[31],"cancer":[32,72],"each":[33],"year,":[34],"an":[36,105],"accurate":[37],"diagnosis":[38,73],"requires":[39],"a":[40,46,103,231],"significant":[41],"amount":[42,233],"of":[43,58,71,76,93,111,113,124,172,194,234],"time":[44],"highly":[47],"qualified":[48],"pathologist":[49],"decrease":[51],"high":[53],"mortality":[54],"rate.":[55],"Recent":[56],"development":[57],"artificial":[59],"intelligence":[60],"technologies":[61],"scanning":[63],"microscopy":[64],"introduced":[65],"digital":[66],"pathology":[67],"into":[68],"field":[70],"by":[74],"means":[75],"whole-slide":[78],"image":[79],"(WSI).":[80],"In":[81],"this":[82],"work,":[83],"we":[84,179],"applied":[85,142],"deep":[86,120],"learning":[87],"methods":[88],"diagnose":[90],"six":[91],"types":[92],"colon":[94,114],"mucosal":[95],"lesions":[96],"using":[97],"convolutional":[98,121],"neural":[99,122],"networks":[100,123],"(CNNs).":[101],"As":[102],"result,":[104],"algorithm":[106],"automatic":[109],"segmentation":[110],"WSIs":[112],"biopsies":[115],"was":[116,156],"developed,":[117],"implementing":[118],"pre-trained,":[119],"ResNet":[126],"EfficientNet":[128],"architectures.":[129],"We":[130],"compared":[131],"classical":[133],"one-cycle":[136],"policy":[137],"CNN":[139],"training":[140],"both":[143],"multi-class":[144],"multi-label":[146,154],"approaches":[147],"solve":[149],"classification":[151],"problem.":[152],"The":[153],"approach":[155],"superior":[157],"because":[158],"some":[159],"WSI":[160],"patches":[161],"may":[162],"belong":[163],"several":[165],"classes":[166],"at":[167],"once":[168],"or":[169],"none":[171],"them.":[173],"Using":[174],"standard":[176],"one-vs-rest":[177],"approach,":[178],"trained":[180],"multiple":[181],"binary":[182],"classifiers.":[183],"They":[184],"achieved":[185],"receiver":[187],"operator":[188],"curve":[189],"AUC":[190],"in":[191,218],"range":[193],"0.80\u20130.96.":[195],"Other":[196],"metrics":[197],"were":[198],"also":[199],"calculated,":[200],"such":[201],"as":[202],"accuracy,":[203],"precision,":[204],"sensitivity,":[205],"specificity,":[206],"negative":[207],"predictive":[208],"value,":[209],"F1-score.":[211],"Obtained":[212],"CNNs":[213],"can":[214,223],"support":[215],"human":[216],"pathologists":[217],"process":[221],"be":[224],"extended":[225],"other":[227],"cancers":[228],"after":[229],"adding":[230],"sufficient":[232],"labeled":[235],"data.":[236]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307635210","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2}],"updated_date":"2024-10-24T09:41:42.595496","created_date":"2022-11-04"}