{"id":"https://openalex.org/W2964117810","doi":"https://doi.org/10.18653/v1/p16-2087","title":"Nonparametric Spherical Topic Modeling with Word Embeddings","display_name":"Nonparametric Spherical Topic Modeling with Word Embeddings","publication_year":2016,"publication_date":"2016-01-01","ids":{"openalex":"https://openalex.org/W2964117810","doi":"https://doi.org/10.18653/v1/p16-2087","mag":"2964117810","pmid":"https://pubmed.ncbi.nlm.nih.gov/30636838","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/6327958"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p16-2087","pdf_url":"https://www.aclweb.org/anthology/P16-2087.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.aclweb.org/anthology/P16-2087.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031717623","display_name":"Kayhan Batmanghelich","orcid":"https://orcid.org/0000-0001-9893-9136"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kayhan Batmanghelich","raw_affiliation_strings":["CSAIL, MIT","Department of Psychology Harvard University"],"affiliations":[{"raw_affiliation_string":"CSAIL, MIT","institution_ids":[]},{"raw_affiliation_string":"Department of Psychology Harvard University","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037303942","display_name":"Ardavan Saeedi","orcid":"https://orcid.org/0000-0001-7763-7980"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ardavan Saeedi","raw_affiliation_strings":["CSAIL, MIT","Department of Psychology Harvard University"],"affiliations":[{"raw_affiliation_string":"CSAIL, MIT","institution_ids":[]},{"raw_affiliation_string":"Department of Psychology Harvard University","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025205227","display_name":"Karthik Narasimhan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karthik Narasimhan","raw_affiliation_strings":["CSAIL, MIT","Department of Psychology Harvard University"],"affiliations":[{"raw_affiliation_string":"CSAIL, MIT","institution_ids":[]},{"raw_affiliation_string":"Department of Psychology Harvard University","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010761037","display_name":"Sam Gershman","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sam Gershman","raw_affiliation_strings":["CSAIL, MIT","Department of Psychology Harvard University"],"affiliations":[{"raw_affiliation_string":"CSAIL, MIT","institution_ids":[]},{"raw_affiliation_string":"Department of Psychology Harvard University","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.103,"has_fulltext":false,"cited_by_count":79,"citation_normalized_percentile":{"value":0.99989,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Model-Based Clustering with Mixture Models","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Model-Based Clustering with Mixture Models","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13910","display_name":"Computational Text Analysis in Social Sciences","score":0.9706,"subfield":{"id":"https://openalex.org/subfields/3300","display_name":"General Social Sciences"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.63078},{"id":"https://openalex.org/keywords/word-representation","display_name":"Word Representation","score":0.576685},{"id":"https://openalex.org/keywords/cosine-similarity","display_name":"Cosine similarity","score":0.53261936},{"id":"https://openalex.org/keywords/mixture-models","display_name":"Mixture Models","score":0.528058},{"id":"https://openalex.org/keywords/natural-language-processing","display_name":"Natural Language Processing","score":0.517582},{"id":"https://openalex.org/keywords/variational-inference","display_name":"Variational Inference","score":0.51669},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.45964977}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7522323},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6092881},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5815055},{"id":"https://openalex.org/C2780762811","wikidata":"https://www.wikidata.org/wiki/Q1784941","display_name":"Cosine similarity","level":3,"score":0.53261936},{"id":"https://openalex.org/C171686336","wikidata":"https://www.wikidata.org/wiki/Q3532085","display_name":"Topic model","level":2,"score":0.5046717},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4860261},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.45964977},{"id":"https://openalex.org/C500882744","wikidata":"https://www.wikidata.org/wiki/Q269236","display_name":"Latent Dirichlet allocation","level":3,"score":0.4459786},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.41444284},{"id":"https://openalex.org/C130318100","wikidata":"https://www.wikidata.org/wiki/Q2268914","display_name":"Semantic similarity","level":2,"score":0.41014013},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.22198698},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p16-2087","pdf_url":"https://www.aclweb.org/anthology/P16-2087.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://europepmc.org/articles/pmc6327958","pdf_url":"https://europepmc.org/articles/pmc6327958?pdf=render","source":{"id":"https://openalex.org/S4306400806","display_name":"Europe PMC (PubMed Central)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1303153112","host_organization_name":"European Bioinformatics Institute","host_organization_lineage":["https://openalex.org/I1303153112"],"host_organization_lineage_names":["European Bioinformatics Institute"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327958","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1604.00126","pdf_url":"https://arxiv.org/pdf/1604.00126","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/30636838","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p16-2087","pdf_url":"https://www.aclweb.org/anthology/P16-2087.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1555156243","https://openalex.org/W1615991656","https://openalex.org/W162256","https://openalex.org/W1880262756","https://openalex.org/W2005564522","https://openalex.org/W2017291483","https://openalex.org/W2072644219","https://openalex.org/W2108456278","https://openalex.org/W2119650157","https://openalex.org/W2124271233","https://openalex.org/W2140124448","https://openalex.org/W2145001205","https://openalex.org/W2147946282","https://openalex.org/W2153579005","https://openalex.org/W2158266063","https://openalex.org/W2166851633","https://openalex.org/W2174706414","https://openalex.org/W2186254624","https://openalex.org/W2250533720","https://openalex.org/W2250539671","https://openalex.org/W2250753706","https://openalex.org/W4294170691","https://openalex.org/W4294562888"],"related_works":["https://openalex.org/W4309940794","https://openalex.org/W3006637168","https://openalex.org/W2480145017","https://openalex.org/W2321884627","https://openalex.org/W2279018116","https://openalex.org/W2251363724","https://openalex.org/W2169172908","https://openalex.org/W2144753143","https://openalex.org/W1985125789","https://openalex.org/W1983719983"],"abstract_inverted_index":{"Traditional":[0],"topic":[1,34,77,119],"models":[2,35],"do":[3],"not":[4],"account":[5],"for":[6,66,74],"semantic":[7,16,97],"regularities":[8],"in":[9,32,116],"language.Recent":[10],"distributional":[11],"representations":[12],"of":[13,56,99,107,118],"words":[14,57],"exhibit":[15],"consistency":[17],"over":[18,58],"directional":[19,67],"metrics":[20],"such":[21,40],"as":[22],"cosine":[23],"similarity.However,":[24],"neither":[25],"categorical":[26],"nor":[27],"Gaussian":[28],"observational":[29],"distributions":[30],"used":[31],"existing":[33],"are":[36],"appropriate":[37],"to":[38,46,52,93],"leverage":[39],"correlations.In":[41],"this":[42],"paper,":[43],"we":[44],"propose":[45,80],"use":[47,69],"the":[48,54,96,105],"von":[49],"Mises-Fisher":[50],"distribution":[51],"model":[53,78,90],"density":[55],"a":[59,62,70],"unit":[60],"sphere.Such":[61],"representation":[63],"is":[64],"well-suited":[65],"data.We":[68],"Hierarchical":[71],"Dirichlet":[72],"Process":[73],"our":[75,111],"base":[76],"and":[79],"an":[81],"efficient":[82,128],"inference":[83],"algorithm":[84],"based":[85],"on":[86,121],"Stochastic":[87],"Variational":[88],"Inference.This":[89],"enables":[91],"us":[92],"naturally":[94],"exploit":[95],"structures":[98],"word":[100],"embeddings":[101],"while":[102,126],"flexibly":[103],"discovering":[104],"number":[106],"topics.Experiments":[108],"demonstrate":[109],"that":[110],"method":[112],"outperforms":[113],"competitive":[114],"approaches":[115],"terms":[117],"coherence":[120],"two":[122],"different":[123],"text":[124],"corpora":[125],"offering":[127],"inference.":[129]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964117810","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":16},{"year":2020,"cited_by_count":16},{"year":2019,"cited_by_count":18},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":8},{"year":2016,"cited_by_count":1}],"updated_date":"2024-11-06T14:12:45.270446","created_date":"2019-07-30"}