{"id":"https://openalex.org/W3173478566","doi":"https://doi.org/10.1609/aaai.v35i3.16335","title":"CARPe Posterum: A Convolutional Approach for Real-Time Pedestrian Path Prediction","display_name":"CARPe Posterum: A Convolutional Approach for Real-Time Pedestrian Path Prediction","publication_year":2021,"publication_date":"2021-05-18","ids":{"openalex":"https://openalex.org/W3173478566","doi":"https://doi.org/10.1609/aaai.v35i3.16335","mag":"3173478566"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i3.16335","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16335/16142","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16335/16142","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031727113","display_name":"Mat\u00edas Mendieta","orcid":"https://orcid.org/0000-0002-5497-6207"},"institutions":[{"id":"https://openalex.org/I102149020","display_name":"University of North Carolina at Charlotte","ror":"https://ror.org/04dawnj30","country_code":"US","type":"education","lineage":["https://openalex.org/I102149020"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Matias Mendieta","raw_affiliation_strings":["University of North Carolina at Charlotte"],"affiliations":[{"raw_affiliation_string":"University of North Carolina at Charlotte","institution_ids":["https://openalex.org/I102149020"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5063615699","display_name":"Hamed Tabkhi","orcid":"https://orcid.org/0000-0001-5420-1121"},"institutions":[{"id":"https://openalex.org/I102149020","display_name":"University of North Carolina at Charlotte","ror":"https://ror.org/04dawnj30","country_code":"US","type":"education","lineage":["https://openalex.org/I102149020"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hamed Tabkhi","raw_affiliation_strings":["University of North Carolina at Charlotte"],"affiliations":[{"raw_affiliation_string":"University of North Carolina at Charlotte","institution_ids":["https://openalex.org/I102149020"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.161,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.999392,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":"35","issue":"3","first_page":"2346","last_page":"2354"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety Systems","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety Systems","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Flow Prediction and Forecasting","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/trajectory-prediction","display_name":"Trajectory Prediction","score":0.553187},{"id":"https://openalex.org/keywords/pedestrian-behavior","display_name":"Pedestrian Behavior","score":0.552148},{"id":"https://openalex.org/keywords/lane-detection","display_name":"Lane Detection","score":0.545716},{"id":"https://openalex.org/keywords/graph-convolutional-networks","display_name":"Graph Convolutional Networks","score":0.508959},{"id":"https://openalex.org/keywords/short-term-forecasting","display_name":"Short-Term Forecasting","score":0.507033}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.793355},{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.61950547},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.6089102},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.598344},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5867199},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5762416},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5385697},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.46133554},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4291908},{"id":"https://openalex.org/C136197465","wikidata":"https://www.wikidata.org/wiki/Q1729295","display_name":"Variety (cybernetics)","level":2,"score":0.4272567},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32678232},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.12629944},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09579119},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i3.16335","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16335/16142","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2005.12469","pdf_url":"https://arxiv.org/pdf/2005.12469","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i3.16335","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16335/16142","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.46,"display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1571268436","https://openalex.org/W1810943226","https://openalex.org/W1988115241","https://openalex.org/W2137983211","https://openalex.org/W2146183743","https://openalex.org/W2167052694","https://openalex.org/W2188365844","https://openalex.org/W2194775991","https://openalex.org/W2424778531","https://openalex.org/W2531409750","https://openalex.org/W2532516272","https://openalex.org/W2613904329","https://openalex.org/W2768959015","https://openalex.org/W2792764867","https://openalex.org/W2799059904","https://openalex.org/W2886483202","https://openalex.org/W2886845974","https://openalex.org/W2907492528","https://openalex.org/W2948971113","https://openalex.org/W2962687116","https://openalex.org/W2962711740","https://openalex.org/W2962835968","https://openalex.org/W2963001155","https://openalex.org/W2963353290","https://openalex.org/W2964015378","https://openalex.org/W2964121744","https://openalex.org/W2964321699","https://openalex.org/W2985871763","https://openalex.org/W3106257603","https://openalex.org/W3215452923","https://openalex.org/W4288287716","https://openalex.org/W4288419263","https://openalex.org/W4294558607","https://openalex.org/W4297733535","https://openalex.org/W4306985960","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W49697837","https://openalex.org/W4205958986","https://openalex.org/W3122828758","https://openalex.org/W2768112316","https://openalex.org/W2512789322","https://openalex.org/W2392100589","https://openalex.org/W2197846993","https://openalex.org/W2170799233","https://openalex.org/W2101960027","https://openalex.org/W1976827262"],"abstract_inverted_index":{"Pedestrian":[0],"path":[1,91,117,146],"prediction":[2,118,127,147],"is":[3,20],"an":[4,105],"essential":[5],"topic":[6],"in":[7,26,41,102,122,134],"computer":[8],"vision":[9],"and":[10,36,73,115,126],"video":[11],"understanding.":[12],"Having":[13],"insight":[14],"into":[15],"the":[16,57],"movement":[17],"of":[18,29,61,98],"pedestrians":[19],"crucial":[21],"for":[22,77,88],"ensuring":[23],"safe":[24],"operation":[25],"a":[27,85,96,113],"variety":[28],"applications":[30],"including":[31],"autonomous":[32],"vehicles,":[33],"social":[34],"robots,":[35],"environmental":[37],"monitoring.":[38],"Current":[39],"works":[40],"this":[42,78,81],"area":[43],"utilize":[44],"complex":[45],"generative":[46],"or":[47],"recurrent":[48],"methods":[49,139],"to":[50,70,111,136],"capture":[51],"many":[52],"possible":[53],"futures.":[54],"However,":[55],"despite":[56],"inherent":[58],"real-time":[59,89],"nature":[60],"predicting":[62],"future":[63],"paths,":[64],"little":[65],"work":[66],"has":[67],"been":[68],"done":[69],"explore":[71],"accurate":[72,116],"computationally":[74],"efficient":[75],"approaches":[76],"task.":[79],"To":[80],"end,":[82],"we":[83],"propose":[84],"convolutional":[86,107],"approach":[87],"pedestrian":[90],"prediction,":[92],"CARPe.":[93],"It":[94],"utilizes":[95],"variation":[97],"Graph":[99],"Isomorphism":[100],"Networks":[101],"combination":[103],"with":[104],"agile":[106],"neural":[108],"network":[109],"design":[110],"form":[112],"fast":[114],"approach.":[119],"Notable":[120],"results":[121],"both":[123],"inference":[124],"speed":[125],"accuracy":[128,143],"are":[129],"achieved,":[130],"improving":[131],"FPS":[132],"considerably":[133],"comparison":[135],"current":[137],"state-of-the-art":[138],"while":[140],"delivering":[141],"competitive":[142],"on":[144],"well-known":[145],"datasets.":[148]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3173478566","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-28T13:16:26.562350","created_date":"2021-07-05"}