iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.14778/3342263.3342269
{"id":"https://openalex.org/W2970207504","doi":"https://doi.org/10.14778/3342263.3342269","title":"NETS","display_name":"NETS","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W2970207504","doi":"https://doi.org/10.14778/3342263.3342269","mag":"2970207504"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.14778/3342263.3342269","pdf_url":null,"source":{"id":"https://openalex.org/S4210226185","display_name":"Proceedings of the VLDB Endowment","issn_l":"2150-8097","issn":["2150-8097"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://scholarworks.uvm.edu/context/cemsfac/article/1082/viewcontent/aLee.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083900503","display_name":"Susik Yoon","orcid":"https://orcid.org/0000-0001-5596-4972"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"education","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Susik Yoon","raw_affiliation_strings":["KAIST, Daejeon, South Korea"],"affiliations":[{"raw_affiliation_string":"KAIST, Daejeon, South Korea","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101805827","display_name":"Jae-Gil Lee","orcid":"https://orcid.org/0000-0002-8711-7732"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"education","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jae-Gil Lee","raw_affiliation_strings":["KAIST, Daejeon, South Korea"],"affiliations":[{"raw_affiliation_string":"KAIST, Daejeon, South Korea","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038390659","display_name":"Byung Suk Lee","orcid":"https://orcid.org/0000-0002-6019-5247"},"institutions":[{"id":"https://openalex.org/I111236770","display_name":"University of Vermont","ror":"https://ror.org/0155zta11","country_code":"US","type":"education","lineage":["https://openalex.org/I111236770"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Byung Suk Lee","raw_affiliation_strings":["University of Vermont"],"affiliations":[{"raw_affiliation_string":"University of Vermont","institution_ids":["https://openalex.org/I111236770"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.878,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":39,"citation_normalized_percentile":{"value":0.999973,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"12","issue":"11","first_page":"1303","last_page":"1315"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Adaptation to Concept Drift in Data Streams","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Handling Imbalanced Data in Classification Problems","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.690819},{"id":"https://openalex.org/keywords/change-detection","display_name":"Change Detection","score":0.583067},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.5725552},{"id":"https://openalex.org/keywords/novelty-detection","display_name":"Novelty Detection","score":0.556908},{"id":"https://openalex.org/keywords/anomaly-detection","display_name":"Anomaly Detection","score":0.553857},{"id":"https://openalex.org/keywords/data-streams","display_name":"Data Streams","score":0.544938},{"id":"https://openalex.org/keywords/identification","display_name":"Identification (biology)","score":0.52802175},{"id":"https://openalex.org/keywords/data-point","display_name":"Data point","score":0.49972177}],"concepts":[{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.8628217},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75483805},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.64484805},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.6321249},{"id":"https://openalex.org/C2778484313","wikidata":"https://www.wikidata.org/wiki/Q1172540","display_name":"Data stream","level":2,"score":0.585715},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.5725552},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5710907},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.52802175},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.51652116},{"id":"https://openalex.org/C21080849","wikidata":"https://www.wikidata.org/wiki/Q13611879","display_name":"Data point","level":2,"score":0.49972177},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.45468307},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.30538088},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.2982059},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.14778/3342263.3342269","pdf_url":null,"source":{"id":"https://openalex.org/S4210226185","display_name":"Proceedings of the VLDB Endowment","issn_l":"2150-8097","issn":["2150-8097"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://scholarworks.uvm.edu/context/cemsfac/article/1082/viewcontent/aLee.pdf","pdf_url":"https://scholarworks.uvm.edu/context/cemsfac/article/1082/viewcontent/aLee.pdf","source":{"id":"https://openalex.org/S4306402640","display_name":"ScholarWorks @UVM (University of Vermont)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I111236770","host_organization_name":"University of Vermont","host_organization_lineage":["https://openalex.org/I111236770"],"host_organization_lineage_names":["University of Vermont"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://scholarworks.uvm.edu/cemsfac/83","pdf_url":"https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=1082&context=cemsfac","source":{"id":"https://openalex.org/S4377196529","display_name":"ScholarWorks -A service of University of Vermont Libraries (University of Vermont)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I111236770","host_organization_name":"University of Vermont","host_organization_lineage":["https://openalex.org/I111236770"],"host_organization_lineage_names":["University of Vermont"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://scholarworks.uvm.edu/context/cemsfac/article/1082/viewcontent/aLee.pdf","pdf_url":"https://scholarworks.uvm.edu/context/cemsfac/article/1082/viewcontent/aLee.pdf","source":{"id":"https://openalex.org/S4306402640","display_name":"ScholarWorks @UVM (University of Vermont)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I111236770","host_organization_name":"University of Vermont","host_organization_lineage":["https://openalex.org/I111236770"],"host_organization_lineage_names":["University of Vermont"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1506285740","https://openalex.org/W1552339598","https://openalex.org/W2000219982","https://openalex.org/W2001703222","https://openalex.org/W2006533296","https://openalex.org/W2042035594","https://openalex.org/W2060952812","https://openalex.org/W2067244657","https://openalex.org/W2100832675","https://openalex.org/W2116300222","https://openalex.org/W2122646361","https://openalex.org/W2140190241","https://openalex.org/W2152576712","https://openalex.org/W2157092487","https://openalex.org/W2252034896","https://openalex.org/W2254628614","https://openalex.org/W2259448304","https://openalex.org/W2538839865","https://openalex.org/W2548218624","https://openalex.org/W2794689483","https://openalex.org/W2914131740","https://openalex.org/W2914720009","https://openalex.org/W4300126076"],"related_works":["https://openalex.org/W4389449520","https://openalex.org/W3190734578","https://openalex.org/W3111802945","https://openalex.org/W3107369729","https://openalex.org/W2946096271","https://openalex.org/W2570600173","https://openalex.org/W2499612753","https://openalex.org/W2295423552","https://openalex.org/W1595351371","https://openalex.org/W127192698"],"abstract_inverted_index":{"This":[0,58],"paper":[1],"addresses":[2],"the":[3,24,42,45,51,63,66,82,106,115,144,159],"problem":[4],"of":[5,37,47,108,136,143,157],"efficiently":[6],"detecting":[7,95],"outliers":[8,109,137],"from":[9,18],"a":[10,33,38,90,119,127,164,200],"data":[11,15,21,39,48,52,98,151,166,178,205],"stream":[12,40,167,206],"as":[13],"old":[14],"points":[16,22,49,99],"expire":[17],"and":[19,105,140,149],"new":[20,120,150,201],"enter":[23],"window":[25],"incrementally.":[26],"The":[27],"proposed":[28,124],"method":[29],"is":[30,54,112,123,155],"based":[31],"on":[32],"newly":[34],"discovered":[35],"characteristic":[36],"that":[41,65,76,197],"change":[43],"in":[44,50,85],"locations":[46,102],"space":[53],"typically":[55],"very":[56],"insignificant.":[57],"observation":[59],"has":[60],"led":[61],"to":[62,94,125,182,203],"finding":[64],"existing":[67],"distance-based":[68],"outlier":[69,207],"detection":[70,107],"algorithms":[71,190],"perform":[72],"excessive":[73],"unnecessary":[74],"computations":[75],"are":[77,103],"repetitive":[78],"and/or":[79],"canceling":[80],"out":[81],"effects.":[83],"Thus,":[84],"this":[86],"paper,":[87],"we":[88],"propose":[89],"novel":[91],"set-based":[92,133],"approach":[93],"outliers,":[96],"whereby":[97],"at":[100,114],"similar":[101],"grouped":[104],"or":[110,138],"inliers":[111,139],"handled":[113],"group":[116],"level.":[117],"Specifically,":[118],"algorithm":[121],"NETS":[122,154,198],"achieve":[126],"remarkable":[128],"performance":[129],"improvement":[130],"by":[131],"realizing":[132],"early":[134],"identification":[135],"taking":[141],"advantage":[142],"\"net":[145],"effect\"":[146],"between":[147],"expired":[148],"points.":[152],"Additionally,":[153],"capable":[156],"achieving":[158],"same":[160],"efficiency":[161],"even":[162],"for":[163],"high-dimensional":[165],"through":[168],"two-level":[169],"dimensional":[170],"filtering":[171],".":[172],"Comprehensive":[173],"experiments":[174],"using":[175],"six":[176],"real-world":[177],"streams":[179],"show":[180],"5":[181],"25":[183],"times":[184],"faster":[185],"processing":[186],"time":[187],"than":[188],"state-of-the-art":[189],"with":[191],"comparable":[192],"memory":[193],"consumption.":[194],"We":[195],"assert":[196],"opens":[199],"possibility":[202],"real-time":[204],"detection.":[208]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2970207504","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":14},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":1}],"updated_date":"2024-11-30T19:51:50.376757","created_date":"2019-09-05"}