iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1186/S42162-022-00230-7
{"id":"https://openalex.org/W4313455409","doi":"https://doi.org/10.1186/s42162-022-00230-7","title":"Anomaly detection in quasi-periodic energy consumption data series: a comparison of algorithms","display_name":"Anomaly detection in quasi-periodic energy consumption data series: a comparison of algorithms","publication_year":2022,"publication_date":"2022-12-21","ids":{"openalex":"https://openalex.org/W4313455409","doi":"https://doi.org/10.1186/s42162-022-00230-7"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s42162-022-00230-7","pdf_url":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-022-00230-7","source":{"id":"https://openalex.org/S3035173479","display_name":"Energy Informatics","issn_l":"2520-8942","issn":["2520-8942"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-022-00230-7","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001321268","display_name":"Niccol\u00f3 Zangrando","orcid":"https://orcid.org/0000-0002-4796-5649"},"institutions":[{"id":"https://openalex.org/I93860229","display_name":"Politecnico di Milano","ror":"https://ror.org/01nffqt88","country_code":"IT","type":"education","lineage":["https://openalex.org/I93860229"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Niccol\u00f2 Zangrando","raw_affiliation_strings":["Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy","institution_ids":["https://openalex.org/I93860229"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024296934","display_name":"Piero Fraternali","orcid":"https://orcid.org/0000-0002-6945-2625"},"institutions":[{"id":"https://openalex.org/I93860229","display_name":"Politecnico di Milano","ror":"https://ror.org/01nffqt88","country_code":"IT","type":"education","lineage":["https://openalex.org/I93860229"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Piero Fraternali","raw_affiliation_strings":["Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy","institution_ids":["https://openalex.org/I93860229"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091875907","display_name":"Marco Petri","orcid":"https://orcid.org/0000-0001-5368-9196"},"institutions":[{"id":"https://openalex.org/I93860229","display_name":"Politecnico di Milano","ror":"https://ror.org/01nffqt88","country_code":"IT","type":"education","lineage":["https://openalex.org/I93860229"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco Petri","raw_affiliation_strings":["Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy","institution_ids":["https://openalex.org/I93860229"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039313308","display_name":"Nicol\u00f2 Oreste Pinciroli Vago","orcid":"https://orcid.org/0000-0001-7906-4987"},"institutions":[{"id":"https://openalex.org/I93860229","display_name":"Politecnico di Milano","ror":"https://ror.org/01nffqt88","country_code":"IT","type":"education","lineage":["https://openalex.org/I93860229"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Nicol\u00f2 Oreste Pinciroli Vago","raw_affiliation_strings":["Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy","institution_ids":["https://openalex.org/I93860229"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022335159","display_name":"Sergio Luis Herrera Gonz\u00e1lez","orcid":"https://orcid.org/0000-0002-8903-0622"},"institutions":[{"id":"https://openalex.org/I93860229","display_name":"Politecnico di Milano","ror":"https://ror.org/01nffqt88","country_code":"IT","type":"education","lineage":["https://openalex.org/I93860229"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Sergio Luis Herrera Gonz\u00e1lez","raw_affiliation_strings":["Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy","institution_ids":["https://openalex.org/I93860229"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":790,"currency":"GBP","value_usd":969,"provenance":"doaj"},"apc_paid":{"value":790,"currency":"GBP","value_usd":969,"provenance":"doaj"},"fwci":0.61,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.751268,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":84},"biblio":{"volume":"5","issue":"S4","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11220","display_name":"Design and Management of Water Distribution Networks","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.600764},{"id":"https://openalex.org/keywords/anomaly-detection","display_name":"Anomaly Detection","score":0.597535},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.56186074},{"id":"https://openalex.org/keywords/pattern-discovery","display_name":"Pattern Discovery","score":0.533176},{"id":"https://openalex.org/keywords/leak-detection","display_name":"Leak Detection","score":0.531978},{"id":"https://openalex.org/keywords/optimization","display_name":"Optimization","score":0.531413},{"id":"https://openalex.org/keywords/sliding-window-protocol","display_name":"Sliding window protocol","score":0.4641759},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.43628052}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.7970326},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64743125},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.5841514},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.56186074},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.54907423},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.54805964},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.53314894},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5206558},{"id":"https://openalex.org/C2780165032","wikidata":"https://www.wikidata.org/wiki/Q16869822","display_name":"Energy consumption","level":2,"score":0.51763517},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.48651117},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.47798532},{"id":"https://openalex.org/C102392041","wikidata":"https://www.wikidata.org/wiki/Q592860","display_name":"Sliding window protocol","level":3,"score":0.4641759},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44525558},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44475552},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.44100264},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.43628052},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3773101},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3591126},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.25932986},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.17323574},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.15769264},{"id":"https://openalex.org/C2778751112","wikidata":"https://www.wikidata.org/wiki/Q835016","display_name":"Window (computing)","level":2,"score":0.14051801},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s42162-022-00230-7","pdf_url":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-022-00230-7","source":{"id":"https://openalex.org/S3035173479","display_name":"Energy Informatics","issn_l":"2520-8942","issn":["2520-8942"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/41ff07aadbbe44c996887f7949bea8c1","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s42162-022-00230-7","pdf_url":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-022-00230-7","source":{"id":"https://openalex.org/S3035173479","display_name":"Energy Informatics","issn_l":"2520-8942","issn":["2520-8942"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.92,"display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1970978220","https://openalex.org/W2018851888","https://openalex.org/W2064675550","https://openalex.org/W2070173743","https://openalex.org/W2080099070","https://openalex.org/W2157331557","https://openalex.org/W2175657233","https://openalex.org/W2186910770","https://openalex.org/W2235252241","https://openalex.org/W2270300596","https://openalex.org/W2296719434","https://openalex.org/W2418133265","https://openalex.org/W2510223299","https://openalex.org/W2614010354","https://openalex.org/W2620661538","https://openalex.org/W2754029504","https://openalex.org/W2780476542","https://openalex.org/W2800620127","https://openalex.org/W2803203130","https://openalex.org/W2903256642","https://openalex.org/W2906498146","https://openalex.org/W2909960414","https://openalex.org/W2914570111","https://openalex.org/W2920143108","https://openalex.org/W2950361482","https://openalex.org/W2962883549","https://openalex.org/W2964336507","https://openalex.org/W2992249713","https://openalex.org/W2997534608","https://openalex.org/W3004207920","https://openalex.org/W3004330032","https://openalex.org/W3004999940","https://openalex.org/W3015316773","https://openalex.org/W3043486047","https://openalex.org/W3092177662","https://openalex.org/W3107249503","https://openalex.org/W3131918926","https://openalex.org/W3140570329","https://openalex.org/W3155567600","https://openalex.org/W4200099981","https://openalex.org/W4225470090","https://openalex.org/W4225495469","https://openalex.org/W4254182148","https://openalex.org/W4285065316","https://openalex.org/W89309601"],"related_works":["https://openalex.org/W4363671829","https://openalex.org/W3202913553","https://openalex.org/W3194885736","https://openalex.org/W3186512740","https://openalex.org/W3111802945","https://openalex.org/W3017266184","https://openalex.org/W2946096271","https://openalex.org/W2806741695","https://openalex.org/W2499612753","https://openalex.org/W2295423552"],"abstract_inverted_index":{"Abstract":[0],"The":[1,124,152,175],"diffusion":[2],"of":[3,7,15,26,49,78,85,122,130,133,140,143,155,210],"domotics":[4],"solutions":[5],"and":[6,10,23,28,55,60,65,100,104,139,187,198,201],"smart":[8],"appliances":[9],"meters":[11],"enables":[12],"the":[13,24,47,72,75,118,128,131,134,141,144,150,156,192,208,215],"monitoring":[14],"energy":[16,35,58,96],"consumption":[17,36,97,120],"at":[18],"a":[19],"very":[20],"fine":[21],"level":[22],"development":[25],"forecasting":[27],"diagnostic":[29],"applications.":[30],"Anomaly":[31],"detection":[32,93],"(AD)":[33],"in":[34,45,109],"data":[37,41,83,98,115],"streams":[38],"helps":[39],"identify":[40],"points":[42],"or":[43],"intervals":[44],"which":[46],"behavior":[48],"an":[50,167,211],"appliance":[51,168,212],"deviates":[52],"from":[53,170,214],"normality":[54],"may":[56],"prevent":[57],"losses":[59],"break":[61],"downs.":[62],"Many":[63],"statistical":[64,103],"learning":[66,106,181],"approaches":[67],"have":[68],"been":[69],"applied":[70,205],"to":[71,148,166,206],"task,":[73],"but":[74],"need":[76],"remains":[77],"comparing":[79],"their":[80],"performances":[81],"with":[82],"sets":[84,116],"different":[86,111,169,213],"characteristics.":[87],"This":[88],"paper":[89],"focuses":[90],"on":[91,94,113],"anomaly":[92],"quasi-periodic":[95],"series":[99,135],"contrasts":[101],"12":[102],"machine":[105,180],"algorithms":[107],"tested":[108],"144":[110],"configurations":[112],"3":[114],"containing":[117],"power":[119],"signals":[121],"fridges.":[123],"assessment":[125],"also":[126,161],"evaluates":[127],"impact":[129],"length":[132],"used":[136,172,217],"for":[137,173,218],"training":[138],"size":[142],"sliding":[145],"window":[146],"employed":[147],"detect":[149,207],"anomalies.":[151],"generalization":[153],"ability":[154],"top":[157],"five":[158],"methods":[159,182,195],"is":[160],"evaluated":[162],"by":[163],"applying":[164],"them":[165],"that":[171,178],"training.":[174,219],"results":[176],"show":[177],"classical":[179],"(Isolation":[183],"Forest,":[184],"One-Class":[185],"SVM":[186],"Local":[188],"Outlier":[189],"Factor)":[190],"outperform":[191],"best":[193],"neural":[194],"(GRU/LSTM":[196],"autoencoder":[197],"multistep":[199],"methods)":[200],"generalize":[202],"better":[203],"when":[204],"anomalies":[209],"one":[216]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313455409","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1}],"updated_date":"2024-09-18T04:16:42.830881","created_date":"2023-01-06"}