{"id":"https://openalex.org/W3111134894","doi":"https://doi.org/10.1155/2020/6431712","title":"A Hybrid Prediction Method for Stock Price Using LSTM and Ensemble EMD","display_name":"A Hybrid Prediction Method for Stock Price Using LSTM and Ensemble EMD","publication_year":2020,"publication_date":"2020-12-01","ids":{"openalex":"https://openalex.org/W3111134894","doi":"https://doi.org/10.1155/2020/6431712","mag":"3111134894"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1155/2020/6431712","pdf_url":null,"source":{"id":"https://openalex.org/S207319443","display_name":"Complexity","issn_l":"1076-2787","issn":["1076-2787","1099-0526"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319869","host_organization_name":"Hindawi Publishing Corporation","host_organization_lineage":["https://openalex.org/P4310319869"],"host_organization_lineage_names":["Hindawi Publishing Corporation"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1155/2020/6431712","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100402368","display_name":"Yujun Yang","orcid":"https://orcid.org/0000-0002-4183-324X"},"institutions":[{"id":"https://openalex.org/I12393601","display_name":"Huaihua University","ror":"https://ror.org/04zn6xq74","country_code":"CN","type":"education","lineage":["https://openalex.org/I12393601"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Yujun","raw_affiliation_strings":["Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua 418000, China","Key Laboratory of Wuling-Mountain Health Big Data Intelligent Processing and Application in Hunan Province Universities, Huaihua 418000, China","School of Computer Science and Engineering, Huaihua University, Huaihua 418008, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Huaihua University, Huaihua 418008, China","institution_ids":["https://openalex.org/I12393601"]},{"raw_affiliation_string":"Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua 418000, China","institution_ids":[]},{"raw_affiliation_string":"Key Laboratory of Wuling-Mountain Health Big Data Intelligent Processing and Application in Hunan Province Universities, Huaihua 418000, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012755001","display_name":"Yimei Yang","orcid":"https://orcid.org/0000-0002-3223-6638"},"institutions":[{"id":"https://openalex.org/I12393601","display_name":"Huaihua University","ror":"https://ror.org/04zn6xq74","country_code":"CN","type":"education","lineage":["https://openalex.org/I12393601"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yang Yimei","raw_affiliation_strings":["Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua 418000, China","School of Computer Science and Engineering, Huaihua University, Huaihua 418008, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Huaihua University, Huaihua 418008, China","institution_ids":["https://openalex.org/I12393601"]},{"raw_affiliation_string":"Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua 418000, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025199085","display_name":"Xiao Jian-hua","orcid":"https://orcid.org/0000-0001-5889-6346"},"institutions":[{"id":"https://openalex.org/I12393601","display_name":"Huaihua University","ror":"https://ror.org/04zn6xq74","country_code":"CN","type":"education","lineage":["https://openalex.org/I12393601"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiao Jianhua","raw_affiliation_strings":["Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua 418000, China","School of Computer Science and Engineering, Huaihua University, Huaihua 418008, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua 418000, China","institution_ids":[]},{"raw_affiliation_string":"School of Computer Science and Engineering, Huaihua University, Huaihua 418008, China","institution_ids":["https://openalex.org/I12393601"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5012755001"],"corresponding_institution_ids":["https://openalex.org/I12393601"],"apc_list":{"value":2300,"currency":"USD","value_usd":2300,"provenance":"doaj"},"apc_paid":{"value":2300,"currency":"USD","value_usd":2300,"provenance":"doaj"},"fwci":3.906,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":31,"citation_normalized_percentile":{"value":0.875712,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"2020","issue":null,"first_page":"1","last_page":"16"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Predicting Stock Market Trends and Movements","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Predicting Stock Market Trends and Movements","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Electricity Price and Load Forecasting Methods","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11270","display_name":"Econophysics: Complexity in Financial Markets","score":0.9897,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stock-market-prediction","display_name":"Stock Market Prediction","score":0.623904},{"id":"https://openalex.org/keywords/electricity-price-forecasting","display_name":"Electricity Price Forecasting","score":0.605476},{"id":"https://openalex.org/keywords/short-term-forecasting","display_name":"Short-Term Forecasting","score":0.539368},{"id":"https://openalex.org/keywords/load-forecasting","display_name":"Load Forecasting","score":0.529217},{"id":"https://openalex.org/keywords/lstm-networks","display_name":"LSTM Networks","score":0.52577},{"id":"https://openalex.org/keywords/stock","display_name":"Stock (firearms)","score":0.46707562}],"concepts":[{"id":"https://openalex.org/C137877099","wikidata":"https://www.wikidata.org/wiki/Q1332977","display_name":"Subsequence","level":3,"score":0.7173852},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6884885},{"id":"https://openalex.org/C2988984586","wikidata":"https://www.wikidata.org/wiki/Q1020013","display_name":"Stock price","level":3,"score":0.62702656},{"id":"https://openalex.org/C2780299701","wikidata":"https://www.wikidata.org/wiki/Q475000","display_name":"Stock market","level":3,"score":0.6006972},{"id":"https://openalex.org/C2777052490","wikidata":"https://www.wikidata.org/wiki/Q5072826","display_name":"Chaotic","level":2,"score":0.5577561},{"id":"https://openalex.org/C2776256503","wikidata":"https://www.wikidata.org/wiki/Q7617906","display_name":"Stock market prediction","level":4,"score":0.5018277},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.49061075},{"id":"https://openalex.org/C204036174","wikidata":"https://www.wikidata.org/wiki/Q909380","display_name":"Stock (firearms)","level":2,"score":0.46707562},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.4334123},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.425955},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4136356},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36402592},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.35155278},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.31278127},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2075684},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C2780762169","wikidata":"https://www.wikidata.org/wiki/Q5905368","display_name":"Horse","level":2,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C34388435","wikidata":"https://www.wikidata.org/wiki/Q2267362","display_name":"Bounded function","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1155/2020/6431712","pdf_url":null,"source":{"id":"https://openalex.org/S207319443","display_name":"Complexity","issn_l":"1076-2787","issn":["1076-2787","1099-0526"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319869","host_organization_name":"Hindawi Publishing Corporation","host_organization_lineage":["https://openalex.org/P4310319869"],"host_organization_lineage_names":["Hindawi Publishing Corporation"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/9bd1062fff3249dfb14e138c2e90956d","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1155/2020/6431712","pdf_url":null,"source":{"id":"https://openalex.org/S207319443","display_name":"Complexity","issn_l":"1076-2787","issn":["1076-2787","1099-0526"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319869","host_organization_name":"Hindawi Publishing Corporation","host_organization_lineage":["https://openalex.org/P4310319869"],"host_organization_lineage_names":["Hindawi Publishing Corporation"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320311213","funder_display_name":"Education Department of Hunan Province","award_id":"17C1266"},{"funder":"https://openalex.org/F4320311213","funder_display_name":"Education Department of Hunan Province","award_id":"ZNKZ2018-5"},{"funder":"https://openalex.org/F4320311213","funder_display_name":"Education Department of Hunan Province","award_id":"19C1472"},{"funder":"https://openalex.org/F4320311213","funder_display_name":"Education Department of Hunan Province","award_id":"HHUY2019-08"}],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1986518666","https://openalex.org/W1993281043","https://openalex.org/W1995210352","https://openalex.org/W2007221293","https://openalex.org/W2064675550","https://openalex.org/W2089079927","https://openalex.org/W2100649405","https://openalex.org/W2110866067","https://openalex.org/W2120390927","https://openalex.org/W2126267628","https://openalex.org/W2200151863","https://openalex.org/W2209610041","https://openalex.org/W2340745493","https://openalex.org/W2523344829","https://openalex.org/W2545584727","https://openalex.org/W2573939497","https://openalex.org/W2587000990","https://openalex.org/W2594142095","https://openalex.org/W2606392079","https://openalex.org/W2607162077","https://openalex.org/W2738898495","https://openalex.org/W2765850282","https://openalex.org/W2771936398","https://openalex.org/W2784381726","https://openalex.org/W2789605973","https://openalex.org/W2793495148","https://openalex.org/W2811395591","https://openalex.org/W2849230600","https://openalex.org/W2869000049","https://openalex.org/W2891929938","https://openalex.org/W2904145138","https://openalex.org/W2911559398","https://openalex.org/W2983557821","https://openalex.org/W2994982829","https://openalex.org/W2997512255","https://openalex.org/W2999917590","https://openalex.org/W3003727433","https://openalex.org/W3009240755","https://openalex.org/W3014017607","https://openalex.org/W3014865388","https://openalex.org/W3015568951"],"related_works":["https://openalex.org/W4283371150","https://openalex.org/W3209908847","https://openalex.org/W3135178882","https://openalex.org/W3023530306","https://openalex.org/W2785399422","https://openalex.org/W2624043242","https://openalex.org/W2586556113","https://openalex.org/W2542516223","https://openalex.org/W2110351804","https://openalex.org/W1980850818"],"abstract_inverted_index":{"The":[0,11,133,150],"stock":[1,15,47,66,106,162],"market":[2],"is":[3,17,156],"a":[4,18,39],"chaotic,":[5],"complex,":[6],"and":[7,20,27,30,51,78,93,158,173],"dynamic":[8],"financial":[9],"market.":[10],"prediction":[12,31,44,101,113,140,152,168],"of":[13,45,103,115,130],"future":[14,46,161],"prices":[16,48],"concern":[19],"controversial":[21],"research":[22],"issue":[23],"for":[24,42],"researchers.":[25,36],"More":[26],"more":[28,76],"analysis":[29],"methods":[32,141],"are":[33,74],"proposed":[34,38,155],"by":[35,110],"We":[37,57],"hybrid":[40,151,167],"method":[41,90,153,169],"the":[43,63,81,88,100,104,112,119,128,131,137,144,166],"using":[49],"LSTM":[50,89],"ensemble":[52],"EMD":[53,60],"in":[54,160],"this":[55],"paper.":[56],"use":[58,87],"comprehensive":[59],"to":[61,91,125],"decompose":[62],"complex":[64],"original":[65,82,105],"price":[67,107,163],"time":[68,83,108],"series":[69,109],"into":[70],"several":[71,116],"subsequences":[72],"which":[73],"smoother,":[75],"regular":[77],"stable":[79],"than":[80],"series.":[84],"Then,":[85],"we":[86,98,121,154],"train":[92],"predict":[94],"each":[95],"subsequence.":[96],"Finally,":[97],"obtained":[99],"values":[102,114,146],"fused":[111],"subsequences.":[117],"In":[118],"experiment,":[120],"selected":[122],"five":[123],"data":[124],"fully":[126],"test":[127],"performance":[129],"method.":[132],"comparison":[134],"results":[135],"with":[136],"other":[138],"four":[139],"show":[142,147],"that":[143],"predicted":[145],"higher":[148],"accuracy.":[149],"effective":[157],"accurate":[159],"prediction.":[164],"Hence,":[165],"has":[170],"practical":[171],"application":[172],"reference":[174],"value.":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3111134894","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":12},{"year":2021,"cited_by_count":4}],"updated_date":"2024-11-02T09:25:17.600081","created_date":"2020-12-21"}