iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1147/JRD.2019.2947011
{"id":"https://openalex.org/W2980034233","doi":"https://doi.org/10.1147/jrd.2019.2947011","title":"Neural network accelerator design with resistive crossbars: Opportunities and challenges","display_name":"Neural network accelerator design with resistive crossbars: Opportunities and challenges","publication_year":2019,"publication_date":"2019-10-11","ids":{"openalex":"https://openalex.org/W2980034233","doi":"https://doi.org/10.1147/jrd.2019.2947011","mag":"2980034233"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1147/jrd.2019.2947011","pdf_url":null,"source":{"id":"https://openalex.org/S4210219925","display_name":"IBM Journal of Research and Development","issn_l":"0018-8646","issn":["0018-8646","2151-8556"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320652","host_organization_name":"IBM","host_organization_lineage":["https://openalex.org/P4310320652"],"host_organization_lineage_names":["IBM"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006114431","display_name":"Shilpa Jain","orcid":"https://orcid.org/0000-0002-6033-6062"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"S. Jain","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089206756","display_name":"Aayush Ankit","orcid":"https://orcid.org/0000-0003-2827-8306"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"A. Ankit","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036923158","display_name":"Indranil Chakraborty","orcid":"https://orcid.org/0000-0003-4829-3706"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"I. Chakraborty","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073094974","display_name":"Tayfun Gokmen","orcid":"https://orcid.org/0000-0002-5677-1723"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"T. Gokmen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008815965","display_name":"Malte J. Rasch","orcid":"https://orcid.org/0000-0002-7988-4624"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"M. Rasch","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025512079","display_name":"Wilfried Haensch","orcid":"https://orcid.org/0000-0003-1725-7171"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"W. Haensch","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031161187","display_name":"Kaushik Roy","orcid":"https://orcid.org/0000-0002-0735-9695"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"K. Roy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5065766721","display_name":"Anand Raghunathan","orcid":"https://orcid.org/0000-0002-4624-564X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"A. Raghunathan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.413,"has_fulltext":false,"cited_by_count":25,"citation_normalized_percentile":{"value":0.810794,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"63","issue":"6","first_page":"10:1","last_page":"10:13"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric Devices for Low-Power Nanoscale Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10472","display_name":"Atomic Layer Deposition Technology","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperdimensional-computing","display_name":"Hyperdimensional Computing","score":0.537233},{"id":"https://openalex.org/keywords/neuromorphic-computing","display_name":"Neuromorphic Computing","score":0.516842},{"id":"https://openalex.org/keywords/brain-inspired-computing","display_name":"Brain-inspired Computing","score":0.50689},{"id":"https://openalex.org/keywords/memory-applications","display_name":"Memory Applications","score":0.503833},{"id":"https://openalex.org/keywords/neuromorphic-engineering","display_name":"Neuromorphic engineering","score":0.41066927}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76466036},{"id":"https://openalex.org/C29984679","wikidata":"https://www.wikidata.org/wiki/Q1929149","display_name":"Crossbar switch","level":2,"score":0.7196144},{"id":"https://openalex.org/C190475519","wikidata":"https://www.wikidata.org/wiki/Q544384","display_name":"Massively parallel","level":2,"score":0.4838504},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.4764921},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.44369316},{"id":"https://openalex.org/C151927369","wikidata":"https://www.wikidata.org/wiki/Q1981312","display_name":"Neuromorphic engineering","level":3,"score":0.41066927},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.4071442},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.3742715},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.3495566},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3260036},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.27200246},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.14037004},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.093915224},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1147/jrd.2019.2947011","pdf_url":null,"source":{"id":"https://openalex.org/S4210219925","display_name":"IBM Journal of Research and Development","issn_l":"0018-8646","issn":["0018-8646","2151-8556"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320652","host_organization_name":"IBM","host_organization_lineage":["https://openalex.org/P4310320652"],"host_organization_lineage_names":["IBM"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","score":0.89,"id":"https://metadata.un.org/sdg/7"}],"grants":[{"funder":"https://openalex.org/F4320332180","funder_display_name":"Defense Advanced Research Projects Agency","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":65,"referenced_works":["https://openalex.org/W1542981317","https://openalex.org/W1636374761","https://openalex.org/W1841592590","https://openalex.org/W1937359183","https://openalex.org/W1969627901","https://openalex.org/W1976075132","https://openalex.org/W1980446076","https://openalex.org/W2004823737","https://openalex.org/W2016922062","https://openalex.org/W2019608217","https://openalex.org/W2060969833","https://openalex.org/W2061087832","https://openalex.org/W2062258233","https://openalex.org/W2155893237","https://openalex.org/W2248832573","https://openalex.org/W2307193480","https://openalex.org/W2331737637","https://openalex.org/W2399958287","https://openalex.org/W2476616835","https://openalex.org/W2508602506","https://openalex.org/W2509746188","https://openalex.org/W2518281301","https://openalex.org/W2526202524","https://openalex.org/W2527492855","https://openalex.org/W2554279936","https://openalex.org/W2591675147","https://openalex.org/W2593769476","https://openalex.org/W2606722458","https://openalex.org/W2612375349","https://openalex.org/W2618530766","https://openalex.org/W2625840880","https://openalex.org/W2736591611","https://openalex.org/W2763421725","https://openalex.org/W2775771159","https://openalex.org/W2781163782","https://openalex.org/W2782046614","https://openalex.org/W2782791387","https://openalex.org/W2785784536","https://openalex.org/W2787453651","https://openalex.org/W2798956872","https://openalex.org/W2803163155","https://openalex.org/W2810405903","https://openalex.org/W2883929540","https://openalex.org/W2885334747","https://openalex.org/W2890887022","https://openalex.org/W2896122000","https://openalex.org/W2905557681","https://openalex.org/W2913104037","https://openalex.org/W2946337031","https://openalex.org/W2963059095","https://openalex.org/W2963387357","https://openalex.org/W2964296127","https://openalex.org/W2991040477","https://openalex.org/W3104147253","https://openalex.org/W3105606255","https://openalex.org/W3106392217","https://openalex.org/W3142548120","https://openalex.org/W4233443202","https://openalex.org/W4234604932","https://openalex.org/W4236709213","https://openalex.org/W4236788275","https://openalex.org/W4245731639","https://openalex.org/W4251342985","https://openalex.org/W4288335415","https://openalex.org/W4293775467"],"related_works":["https://openalex.org/W4387459935","https://openalex.org/W4382561696","https://openalex.org/W4285308918","https://openalex.org/W3031505884","https://openalex.org/W3015991694","https://openalex.org/W2971712727","https://openalex.org/W2951049725","https://openalex.org/W2908450434","https://openalex.org/W2612269878","https://openalex.org/W2588565308"],"abstract_inverted_index":{"Deep":[0],"neural":[1,270],"networks":[2,271],"(DNNs)":[3],"achieve":[4],"best-known":[5],"accuracies":[6],"in":[7,13,24,46,68,97,107,143,145],"many":[8],"machine":[9],"learning":[10],"tasks":[11],"involved":[12],"image,":[14],"voice,":[15],"and":[16,20,40,60,87,156,167,173,185,209,212,217,246,282],"natural":[17],"language":[18],"processing":[19,57],"are":[21,34,235],"being":[22],"used":[23],"an":[25,94],"ever-increasing":[26,83],"range":[27,243],"of":[28,50,85,170,204,244],"applications.":[29],"However,":[30,81,188],"their":[31,198],"algorithmic":[32],"benefits":[33,225],"accompanied":[35],"by":[36,181],"extremely":[37],"high":[38,165],"computation":[39,166],"storage":[41,168],"costs,":[42],"sparking":[43],"intense":[44],"efforts":[45,73],"optimizing":[47],"the":[48,66,82,88,104,146,150,164,202,223,227,231,255,263,278],"design":[49,190],"computing":[51,77,155],"platforms":[52],"for":[53,125,265,269],"DNNs.":[54],"Today,":[55],"graphics":[56],"units":[58],"(GPUs)":[59],"specialized":[61],"digital":[62],"CMOS":[63],"accelerators":[64,180,268],"represent":[65],"state-of-the-art":[67],"DNN":[69,127,179],"hardware,":[70],"with":[71],"near-term":[72],"focusing":[74],"on":[75],"approximate":[76],"through":[78],"reduced":[79],"precision.":[80],"complexities":[84],"DNNs":[86,172],"data":[89,183],"they":[90,131],"process":[91],"have":[92,117],"fueled":[93],"active":[95],"interest":[96],"alternative":[98],"hardware":[99,128,267],"fabrics":[100,129],"that":[101],"can":[102,132],"deliver":[103],"next":[105],"leap":[106],"efficiency.":[108],"Resistive":[109],"crossbars":[110],"designed":[111],"using":[112,272],"emerging":[113],"nonvolatile":[114],"memory":[115,151,186],"technologies":[116],"emerged":[118],"as":[119],"a":[120,242],"promising":[121],"candidate":[122],"building":[123],"block":[124],"future":[126],"since":[130],"natively":[133],"execute":[134],"massively":[135],"parallel":[136],"vector-matrix":[137],"multiplications":[138],"(the":[139],"dominant":[140],"compute":[141],"kernel":[142],"DNNs)":[144],"analog":[147,232],"domain":[148],"within":[149],"arrays.":[152],"Leveraging":[153],"in-memory":[154],"dense":[157],"storage,":[158],"resistive-crossbar-based":[159],"systems":[160],"cater":[161],"to":[162,193,196,238,241,251,286],"both":[163],"demands":[169],"complex":[171],"promise":[174],"energy":[175],"efficiency":[176,224],"beyond":[177],"current":[178],"mitigating":[182],"transfer":[184],"bottlenecks.":[187],"several":[189],"challenges":[191,281],"need":[192],"be":[194],"addressed":[195],"enable":[197],"adoption.":[199],"For":[200],"example,":[201],"overheads":[203],"peripheral":[205],"circuits":[206],"(analog-to-digital":[207],"converters":[208],"digital-to-analog":[210],"converters)":[211],"other":[213],"components":[214],"(scratchpad":[215],"memories":[216],"on-chip":[218],"interconnect)":[219],"may":[220],"significantly":[221],"diminish":[222],"at":[226,254],"system":[228],"level.":[229,257],"Additionally,":[230],"crossbar":[233],"computations":[234],"intrinsically":[236],"subject":[237],"noise":[239],"due":[240],"device-":[245],"circuit-level":[247],"nonidealities,":[248],"potentially":[249],"leading":[250],"lower":[252],"accuracy":[253],"application":[256],"In":[258],"this":[259],"article,":[260],"we":[261],"highlight":[262],"prospects":[264],"designing":[266],"resistive":[273],"crossbars.":[274],"We":[275],"also":[276],"underscore":[277],"key":[279],"open":[280],"some":[283],"possible":[284],"approaches":[285],"address":[287],"them.":[288]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2980034233","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":9},{"year":2018,"cited_by_count":1}],"updated_date":"2024-11-14T23:23:35.335444","created_date":"2019-10-18"}