{"id":"https://openalex.org/W4395106471","doi":"https://doi.org/10.1145/3620666.3651332","title":"PATHFINDER: Practical Real-Time Learning for Data Prefetching","display_name":"PATHFINDER: Practical Real-Time Learning for Data Prefetching","publication_year":2024,"publication_date":"2024-04-24","ids":{"openalex":"https://openalex.org/W4395106471","doi":"https://doi.org/10.1145/3620666.3651332"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3620666.3651332","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019121071","display_name":"Lin Jia","orcid":"https://orcid.org/0009-0007-8496-0058"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"education","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lin Jia","raw_affiliation_strings":["University of Utah, Salt Lake city, USA"],"affiliations":[{"raw_affiliation_string":"University of Utah, Salt Lake city, USA","institution_ids":["https://openalex.org/I223532165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101627810","display_name":"James Patrick Mcmahon","orcid":"https://orcid.org/0009-0006-3718-794X"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"education","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"James Patrick Mcmahon","raw_affiliation_strings":["University of Utah, Salt Lake city, United States of America"],"affiliations":[{"raw_affiliation_string":"University of Utah, Salt Lake city, United States of America","institution_ids":["https://openalex.org/I223532165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066732797","display_name":"Sumanth Gudaparthi","orcid":"https://orcid.org/0000-0002-5008-9870"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"education","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sumanth Gudaparthi","raw_affiliation_strings":["University of Utah, Salt Lake City, United States of America"],"affiliations":[{"raw_affiliation_string":"University of Utah, Salt Lake City, United States of America","institution_ids":["https://openalex.org/I223532165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102742850","display_name":"S. Singh","orcid":"https://orcid.org/0009-0004-7338-0267"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"education","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shreyas Singh","raw_affiliation_strings":["University of Utah, Salt Lake City, United States of America"],"affiliations":[{"raw_affiliation_string":"University of Utah, Salt Lake City, United States of America","institution_ids":["https://openalex.org/I223532165"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087056095","display_name":"Rajeev Balasubramonian","orcid":"https://orcid.org/0009-0009-4093-5904"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"education","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rajeev Balasubramonian","raw_affiliation_strings":["University of Utah, Salt Lake City, United States of America"],"affiliations":[{"raw_affiliation_string":"University of Utah, Salt Lake City, United States of America","institution_ids":["https://openalex.org/I223532165"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.477,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.999984,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":85,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"785","last_page":"800"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11181","display_name":"Distributed Storage Systems and Network Coding","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6578375},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.53577566},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.497386},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.49730924},{"id":"https://openalex.org/keywords/pathfinder","display_name":"Pathfinder","score":0.41248554}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85269237},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6578375},{"id":"https://openalex.org/C79581498","wikidata":"https://www.wikidata.org/wiki/Q1367530","display_name":"Suite","level":2,"score":0.6345252},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.60832393},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.5924027},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5783254},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5479512},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.53577566},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5300759},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.50847256},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5068746},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.49730924},{"id":"https://openalex.org/C2778940482","wikidata":"https://www.wikidata.org/wiki/Q7144753","display_name":"Pathfinder","level":2,"score":0.41248554},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33295548},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C161191863","wikidata":"https://www.wikidata.org/wiki/Q199655","display_name":"Library science","level":1,"score":0.0},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3620666.3651332","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CNS 2245999"},{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CCF 2224463"},{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CCF 2217154"}],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1513547380","https://openalex.org/W1570411240","https://openalex.org/W1967869476","https://openalex.org/W1985210871","https://openalex.org/W2004277475","https://openalex.org/W2030680937","https://openalex.org/W2051407019","https://openalex.org/W2082690044","https://openalex.org/W2097446068","https://openalex.org/W2103330947","https://openalex.org/W2105823594","https://openalex.org/W2107349848","https://openalex.org/W2121458485","https://openalex.org/W2125305952","https://openalex.org/W2147101007","https://openalex.org/W2152356827","https://openalex.org/W2158630919","https://openalex.org/W2171006257","https://openalex.org/W2234679013","https://openalex.org/W2329976284","https://openalex.org/W2629785709","https://openalex.org/W2725159389","https://openalex.org/W2735289987","https://openalex.org/W2930718998","https://openalex.org/W2988190042","https://openalex.org/W2999788381","https://openalex.org/W3042725081","https://openalex.org/W3138221395","https://openalex.org/W3153963463","https://openalex.org/W4252943218","https://openalex.org/W4255807648","https://openalex.org/W4321637333","https://openalex.org/W4381611560"],"related_works":["https://openalex.org/W4381430104","https://openalex.org/W4226059458","https://openalex.org/W2995102745","https://openalex.org/W2991483587","https://openalex.org/W2914559142","https://openalex.org/W2786391746","https://openalex.org/W2162226201","https://openalex.org/W2114850125","https://openalex.org/W1990237101","https://openalex.org/W1979971663"],"abstract_inverted_index":{"Data":[0],"prefetching":[1],"is":[2,83],"vital":[3],"in":[4,43,98,114,137],"high-performance":[5],"processors":[6],"and":[7,46,60,91,124],"a":[8,15,37,62,108,115],"large":[9,109,116],"body":[10],"of":[11,17,80],"research":[12],"has":[13],"introduced":[14],"number":[16],"different":[18],"approaches":[19],"for":[20,71,88,122],"accurate":[21,69],"prefetching:":[22],"stride":[23],"detection,":[24,30,33],"address":[25],"correlating":[26],"prefetchers,":[27],"delta":[28],"pattern":[29,32],"irregular":[31],"etc.":[34],"Most":[35],"recently,":[36],"few":[38],"works":[39],"have":[40,102],"leveraged":[41],"advances":[42],"machine":[44],"learning":[45],"deep":[47],"neural":[48],"networks":[49],"to":[50,77,103,135],"design":[51],"prefetchers.":[52],"These":[53,93],"neural-inspired":[54],"prefetchers":[55,82],"observe":[56],"data":[57],"access":[58],"patterns":[59,131,136],"develop":[61],"trained":[63,97,105],"model":[64,117,126],"that":[65,132],"can":[66,127],"then":[67],"make":[68],"predictions":[70],"future":[72],"accesses.":[73],"A":[74],"significant":[75],"impediment":[76],"the":[78,120,125,138],"success":[79],"these":[81],"their":[84],"high":[85],"implementation":[86],"cost,":[87],"both":[89],"inference":[90],"training.":[92],"models":[94],"cannot":[95],"be":[96,104],"real-time,":[99],"i.e.,":[100],"they":[101],"beforehand":[106],"with":[107],"benchmark":[110],"suite.":[111],"This":[112],"results":[113],"(that":[118],"increases":[119],"overhead":[121],"inference),":[123],"only":[128],"successfully":[129],"predict":[130],"are":[133],"similar":[134],"training":[139],"set.":[140]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4395106471","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-21T06:55:13.009671","created_date":"2024-04-25"}