{"id":"https://openalex.org/W4386755323","doi":"https://doi.org/10.1145/3576915.3616592","title":"DP-Forward: Fine-tuning and Inference on Language Models with Differential Privacy in Forward Pass","display_name":"DP-Forward: Fine-tuning and Inference on Language Models with Differential Privacy in Forward Pass","publication_year":2023,"publication_date":"2023-11-15","ids":{"openalex":"https://openalex.org/W4386755323","doi":"https://doi.org/10.1145/3576915.3616592"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3576915.3616592","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2309.06746","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083712477","display_name":"Minxin Du","orcid":"https://orcid.org/0000-0001-6620-6923"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Minxin Du","raw_affiliation_strings":["The Chinese University of Hong Kong, Shatin, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The Chinese University of Hong Kong, Shatin, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086600391","display_name":"Xiang Yue","orcid":"https://orcid.org/0000-0003-4547-1685"},"institutions":[{"id":"https://openalex.org/I52357470","display_name":"The Ohio State University","ror":"https://ror.org/00rs6vg23","country_code":"US","type":"education","lineage":["https://openalex.org/I52357470"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiang Yue","raw_affiliation_strings":["The Ohio State University, Columbus, OH, USA"],"affiliations":[{"raw_affiliation_string":"The Ohio State University, Columbus, OH, USA","institution_ids":["https://openalex.org/I52357470"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067752906","display_name":"Sherman S. M. Chow","orcid":"https://orcid.org/0000-0001-7306-453X"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sherman S. M. Chow","raw_affiliation_strings":["The Chinese University of Hong Kong, Shatin, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The Chinese University of Hong Kong, Shatin, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100610986","display_name":"Tianhao Wang","orcid":"https://orcid.org/0000-0002-9017-7947"},"institutions":[{"id":"https://openalex.org/I51556381","display_name":"University of Virginia","ror":"https://ror.org/0153tk833","country_code":"US","type":"education","lineage":["https://openalex.org/I51556381"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tianhao Wang","raw_affiliation_strings":["University of Virginia, Charlottesville, VA, USA"],"affiliations":[{"raw_affiliation_string":"University of Virginia, Charlottesville, VA, USA","institution_ids":["https://openalex.org/I51556381"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055845845","display_name":"Chenyu Huang","orcid":"https://orcid.org/0000-0001-6301-2568"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chenyu Huang","raw_affiliation_strings":["Independent Researcher, Shen Zhen, China"],"affiliations":[{"raw_affiliation_string":"Independent Researcher, Shen Zhen, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101488340","display_name":"Huan Sun","orcid":"https://orcid.org/0000-0001-6436-4813"},"institutions":[{"id":"https://openalex.org/I52357470","display_name":"The Ohio State University","ror":"https://ror.org/00rs6vg23","country_code":"US","type":"education","lineage":["https://openalex.org/I52357470"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Huan Sun","raw_affiliation_strings":["The Ohio State University, Columbus, OH, USA"],"affiliations":[{"raw_affiliation_string":"The Ohio State University, Columbus, OH, USA","institution_ids":["https://openalex.org/I52357470"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.999953,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":95},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9668,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.602003},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.581594},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.51126},{"id":"https://openalex.org/keywords/approximate-inference","display_name":"Approximate inference","score":0.44015223}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7863796},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.7359525},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71216047},{"id":"https://openalex.org/C23130292","wikidata":"https://www.wikidata.org/wiki/Q5275358","display_name":"Differential privacy","level":2,"score":0.6642077},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.5098814},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.47566858},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.44072008},{"id":"https://openalex.org/C2777472644","wikidata":"https://www.wikidata.org/wiki/Q16968992","display_name":"Approximate inference","level":3,"score":0.44015223},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.42811105},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.425036},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.41318},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35850924},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3576915.3616592","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2309.06746","pdf_url":"http://arxiv.org/pdf/2309.06746","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.06746","pdf_url":"https://arxiv.org/pdf/2309.06746","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.06746","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2309.06746","pdf_url":"http://arxiv.org/pdf/2309.06746","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"IIS 1815674, CAREER 1942980, CNS-2220433, CNS-2213700, OAC-2319988"}],"datasets":[],"versions":["https://openalex.org/W4386755323"],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1446333884","https://openalex.org/W1560153690","https://openalex.org/W1856966722","https://openalex.org/W2251655261","https://openalex.org/W2473418344","https://openalex.org/W2535690855","https://openalex.org/W2594311007","https://openalex.org/W2767079719","https://openalex.org/W2795435272","https://openalex.org/W2888161220","https://openalex.org/W2897830718","https://openalex.org/W2950321888","https://openalex.org/W2962796461","https://openalex.org/W2963515066","https://openalex.org/W2963952467","https://openalex.org/W2964303773","https://openalex.org/W2970641574","https://openalex.org/W2998378988","https://openalex.org/W3003815046","https://openalex.org/W3033357972","https://openalex.org/W3096738375","https://openalex.org/W3139053233","https://openalex.org/W3182470338","https://openalex.org/W3188505388","https://openalex.org/W4200633373","https://openalex.org/W4205228770","https://openalex.org/W4285143763","https://openalex.org/W4290960278","https://openalex.org/W4385567149"],"related_works":["https://openalex.org/W4388717445","https://openalex.org/W4366280654","https://openalex.org/W4362706668","https://openalex.org/W4361791424","https://openalex.org/W4231621013","https://openalex.org/W4206903459","https://openalex.org/W3160167280","https://openalex.org/W3008318776","https://openalex.org/W2754816816","https://openalex.org/W2041416246"],"abstract_inverted_index":{"Differentially":[0],"private":[1],"stochastic":[2],"gradient":[3],"descent":[4],"(DP-SGD)":[5],"adds":[6],"noise":[7,95],"to":[8,23,44,131,146,169],"gradients":[9],"in":[10,38,59],"back-propagation,":[11],"safeguarding":[12],"training":[13,72],"data":[14],"from":[15,96,106],"privacy":[16,136],"leakage,":[17],"particularly":[18],"membership":[19],"inference.":[20,33],"It":[21,34,65,138,153],"fails":[22],"cover":[24],"(inference-time)":[25],"threats":[26],"like":[27],"embedding":[28,57,161],"inversion":[29,162],"and":[30,40,73,126,142,163,171],"sensitive":[31,164],"attribute":[32,165],"is":[35],"also":[36,154],"costly":[37],"storage":[39],"computation":[41],"when":[42],"used":[43],"fine-tune":[45],"large":[46],"pre-trained":[47],"language":[48],"models":[49],"(LMs).":[50],"We":[51,101],"propose":[52],"DP-Forward,":[53],"which":[54],"directly":[55],"perturbs":[56],"matrices":[58],"the":[60,80,123,149,156],"forward":[61],"pass":[62],"of":[63,110,160],"LMs.":[64],"satisfies":[66],"stringent":[67],"local":[68],"DP":[69],"requirements":[70],"for":[71],"inference":[74,166],"data.":[75],"To":[76],"instantiate":[77],"it":[78],"using":[79],"smallest":[81],"matrix-valued":[82],"noise,":[83],"we":[84],"devise":[85],"an":[86],"analytic":[87],"matrix":[88,98],"Gaussian~mechanism":[89],"(aMGM)":[90],"by":[91,129,167],"drawing":[92],"possibly":[93],"non-i.i.d.":[94],"a":[97,134],"Gaussian":[99],"distribution.":[100],"then":[102],"investigate":[103],"perturbing":[104],"outputs":[105],"different":[107],"hidden":[108],"(sub-)layers":[109],"LMs":[111],"with":[112,148],"aMGM":[113],"noises.":[114],"Its":[115],"utility":[116],"on":[117],"three":[118],"typical":[119],"tasks":[120],"almost":[121],"hits":[122],"non-private":[124],"baseline":[125],"outperforms":[127],"DP-SGD":[128,147,175],"up":[130,168],"7.7pp":[132],"at":[133],"moderate":[135],"level.":[137],"saves":[139],"3$\\times$":[140],"time":[141],"memory":[143],"costs":[144],"compared":[145],"latest":[150],"high-speed":[151],"library.":[152],"reduces":[155],"average":[157],"success":[158],"rates":[159],"88pp":[170],"41pp,":[172],"respectively,":[173],"whereas":[174],"fails.":[176]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386755323","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":2}],"updated_date":"2024-11-01T06:34:45.393282","created_date":"2023-09-15"}