iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1145/3532213.3532238
{"id":"https://openalex.org/W4285410133","doi":"https://doi.org/10.1145/3532213.3532238","title":"Multi-Participant Vertical Federated Learning Based Time Series Prediction","display_name":"Multi-Participant Vertical Federated Learning Based Time Series Prediction","publication_year":2022,"publication_date":"2022-03-18","ids":{"openalex":"https://openalex.org/W4285410133","doi":"https://doi.org/10.1145/3532213.3532238"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3532213.3532238","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5056644602","display_name":"Yan Yang","orcid":"https://orcid.org/0000-0001-9922-2508"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Yan","raw_affiliation_strings":["Qulian Technology Co., Ltd, China"],"affiliations":[{"raw_affiliation_string":"Qulian Technology Co., Ltd, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083693960","display_name":"Guozheng Yang","orcid":"https://orcid.org/0000-0002-6284-0959"},"institutions":[{"id":"https://openalex.org/I917184967","display_name":"Bank of China","ror":"https://ror.org/02mt4s337","country_code":"CN","type":"other","lineage":["https://openalex.org/I917184967"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guozheng Yang","raw_affiliation_strings":["Zheshang Bank Co., Ltd., China"],"affiliations":[{"raw_affiliation_string":"Zheshang Bank Co., Ltd., China","institution_ids":["https://openalex.org/I917184967"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006245983","display_name":"Yan Gao","orcid":"https://orcid.org/0000-0002-2203-9104"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan Gao","raw_affiliation_strings":["Zhejiang University, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033568383","display_name":"Cheng Zang","orcid":"https://orcid.org/0000-0002-2175-4560"},"institutions":[{"id":"https://openalex.org/I917184967","display_name":"Bank of China","ror":"https://ror.org/02mt4s337","country_code":"CN","type":"other","lineage":["https://openalex.org/I917184967"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cheng Zang","raw_affiliation_strings":["Zheshang Bank Co., Ltd, China"],"affiliations":[{"raw_affiliation_string":"Zheshang Bank Co., Ltd, China","institution_ids":["https://openalex.org/I917184967"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100427076","display_name":"Jiajun Chen","orcid":"https://orcid.org/0000-0001-5618-3932"},"institutions":[{"id":"https://openalex.org/I917184967","display_name":"Bank of China","ror":"https://ror.org/02mt4s337","country_code":"CN","type":"other","lineage":["https://openalex.org/I917184967"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiajun Chen","raw_affiliation_strings":["Zheshang Bank Co., Ltd, China"],"affiliations":[{"raw_affiliation_string":"Zheshang Bank Co., Ltd, China","institution_ids":["https://openalex.org/I917184967"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100367039","display_name":"Qiang Wang","orcid":"https://orcid.org/0000-0002-9782-6575"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qiang Wang","raw_affiliation_strings":["Zhejiang University, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, China","institution_ids":["https://openalex.org/I76130692"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.811,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.685436,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"165","last_page":"171"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.599867},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5684869},{"id":"https://openalex.org/keywords/distributed-learning","display_name":"Distributed learning","score":0.51118284},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.41232333}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.827845},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.599867},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5910125},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5684869},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.54485106},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5203116},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.51320386},{"id":"https://openalex.org/C2779582901","wikidata":"https://www.wikidata.org/wiki/Q21013010","display_name":"Distributed learning","level":2,"score":0.51118284},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4677558},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.45091045},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44983277},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.41232333},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.13568193},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3532213.3532238","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.46,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1968527334","https://openalex.org/W2025322090","https://openalex.org/W2143087446","https://openalex.org/W2535199873","https://openalex.org/W2679684481","https://openalex.org/W2701059868","https://openalex.org/W2767079719","https://openalex.org/W2912213068","https://openalex.org/W2944951172","https://openalex.org/W2951059495","https://openalex.org/W2970606380","https://openalex.org/W3010852232","https://openalex.org/W3037145554","https://openalex.org/W3102259344","https://openalex.org/W4232172926","https://openalex.org/W4253298716"],"related_works":["https://openalex.org/W4398164851","https://openalex.org/W4323521275","https://openalex.org/W4322741898","https://openalex.org/W4317941881","https://openalex.org/W4229067761","https://openalex.org/W4220738117","https://openalex.org/W3159168343","https://openalex.org/W3091296419","https://openalex.org/W3035996294","https://openalex.org/W2954034773"],"abstract_inverted_index":{"Federated":[0],"learning":[1,17,59],"(FL)":[2],"ensures":[3],"multi-party":[4],"can":[5],"train":[6],"a":[7,51],"model":[8],"together":[9],"while":[10],"avoiding":[11],"privacy":[12],"leakage.":[13],"Our":[14,45],"vertical":[15],"federated":[16],"(VFL)":[18],"task":[19],"tackles":[20],"the":[21,28,42,64,78,83,127,130],"following":[22],"scenarios:":[23],"i)":[24,49],"all":[25],"parties":[26],"share":[27],"same":[29],"sample":[30],"space":[31],"but":[32],"differ":[33],"in":[34,132],"feature":[35],"space,":[36],"ii)":[37,68],"only":[38],"one":[39],"party":[40],"holds":[41],"label":[43],"data.":[44],"contribution":[46],"is":[47,60],"twofold:":[48],"proposing":[50],"novel":[52],"aggregation":[53],"strategy":[54,71],"to":[55,62,81,125],"show":[56],"that":[57],"embedding":[58],"qualified":[61],"handle":[63],"challenge":[65],"of":[66,72,129,134],"VFL,":[67],"Incorporating":[69],"specific":[70],"Secure":[73],"Multi-party":[74],"Computation":[75],"(MPC)":[76],"into":[77],"training":[79],"phase":[80],"remain":[82],"dataset":[84],"at":[85],"each":[86],"local":[87],"machine.":[88],"We":[89,105],"focus":[90],"on":[91,109],"time":[92],"series":[93],"scenarios":[94],"and":[95,117,136],"choose":[96],"Gated":[97],"Recurrent":[98],"Unit":[99],"(GRU)":[100],"as":[101],"our":[102,107],"basic":[103],"algorithm.":[104],"evaluate":[106],"method":[108],"both":[110],"Google":[111],"stock":[112],"data":[113],"for":[114,122],"regression":[115],"prediction":[116,124],"Kyoto":[118],"University":[119],"Benchmark":[120],"Data":[121],"classification":[123],"illustrate":[126],"performance":[128],"results":[131],"terms":[133],"computational":[135],"communication":[137],"complexities.":[138]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285410133","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3}],"updated_date":"2024-12-10T10:02:23.722392","created_date":"2022-07-14"}