{"id":"https://openalex.org/W4281767790","doi":"https://doi.org/10.1145/3526241.3530331","title":"HDnn-PIM: Efficient in Memory Design of Hyperdimensional Computing with Feature Extraction","display_name":"HDnn-PIM: Efficient in Memory Design of Hyperdimensional Computing with Feature Extraction","publication_year":2022,"publication_date":"2022-06-02","ids":{"openalex":"https://openalex.org/W4281767790","doi":"https://doi.org/10.1145/3526241.3530331"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3526241.3530331","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3526241.3530331","source":{"id":"https://openalex.org/S4363608736","display_name":"Proceedings of the Great Lakes Symposium on VLSI 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3526241.3530331","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015514276","display_name":"Arpan Dutta","orcid":"https://orcid.org/0000-0002-8385-9931"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Arpan Dutta","raw_affiliation_strings":["University of California, San Diego, San Diego, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, San Diego, San Diego, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079372283","display_name":"Saransh Gupta","orcid":"https://orcid.org/0000-0001-5814-3934"},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Saransh Gupta","raw_affiliation_strings":["IBM Research, San Jose, CA, USA"],"affiliations":[{"raw_affiliation_string":"IBM Research, San Jose, CA, USA","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060490428","display_name":"Behnam Khaleghi","orcid":"https://orcid.org/0000-0002-3655-0501"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Behnam Khaleghi","raw_affiliation_strings":["University of California, San Diego, San Diego, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, San Diego, San Diego, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064803517","display_name":"Rishikanth Chandrasekaran","orcid":"https://orcid.org/0000-0002-8738-8698"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rishikanth Chandrasekaran","raw_affiliation_strings":["University of California, San Diego, San Diego, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, San Diego, San Diego, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039571679","display_name":"Weihong Xu","orcid":"https://orcid.org/0000-0003-3766-3353"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Weihong Xu","raw_affiliation_strings":["University of California, San Diego, San Diego, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, San Diego, San Diego, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025573294","display_name":"Tajana Rosing","orcid":"https://orcid.org/0000-0002-6954-997X"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tajana Rosing","raw_affiliation_strings":["University of California, San Diego, San Diego, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, San Diego, San Diego, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.524,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.999932,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12808","display_name":"Ferroelectric Devices for Low-Power Nanoscale Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12808","display_name":"Ferroelectric Devices for Low-Power Nanoscale Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12611","display_name":"Photonic Reservoir Computing for Neural Computation","score":0.9881,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/parallelizable-manifold","display_name":"Parallelizable manifold","score":0.8634796},{"id":"https://openalex.org/keywords/memory-footprint","display_name":"Memory footprint","score":0.8470949},{"id":"https://openalex.org/keywords/hyperdimensional-computing","display_name":"Hyperdimensional Computing","score":0.596376},{"id":"https://openalex.org/keywords/footprint","display_name":"Footprint","score":0.58110344},{"id":"https://openalex.org/keywords/neuromorphic-computing","display_name":"Neuromorphic Computing","score":0.527921},{"id":"https://openalex.org/keywords/brain-inspired-computing","display_name":"Brain-inspired Computing","score":0.526497},{"id":"https://openalex.org/keywords/implementation","display_name":"Implementation","score":0.4487879}],"concepts":[{"id":"https://openalex.org/C148047603","wikidata":"https://www.wikidata.org/wiki/Q1014612","display_name":"Parallelizable manifold","level":2,"score":0.8634796},{"id":"https://openalex.org/C74912251","wikidata":"https://www.wikidata.org/wiki/Q6815727","display_name":"Memory footprint","level":2,"score":0.8470949},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84487593},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6603908},{"id":"https://openalex.org/C132943942","wikidata":"https://www.wikidata.org/wiki/Q2562511","display_name":"Footprint","level":2,"score":0.58110344},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5219704},{"id":"https://openalex.org/C26713055","wikidata":"https://www.wikidata.org/wiki/Q245962","display_name":"Implementation","level":2,"score":0.4487879},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.41348064},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4052945},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.39293474},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.3499127},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.23779935},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.08584717},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3526241.3530331","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3526241.3530331","source":{"id":"https://openalex.org/S4363608736","display_name":"Proceedings of the Great Lakes Symposium on VLSI 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3526241.3530331","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3526241.3530331","source":{"id":"https://openalex.org/S4363608736","display_name":"Proceedings of the Great Lakes Symposium on VLSI 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.9,"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1578783943","https://openalex.org/W2194775991","https://openalex.org/W2407339173","https://openalex.org/W2438799339","https://openalex.org/W2508602506","https://openalex.org/W2518281301","https://openalex.org/W2900379535","https://openalex.org/W2946584982","https://openalex.org/W2949989598","https://openalex.org/W3112653938","https://openalex.org/W3212827699"],"related_works":["https://openalex.org/W4372263373","https://openalex.org/W4285069850","https://openalex.org/W4281767790","https://openalex.org/W4240963716","https://openalex.org/W3137434606","https://openalex.org/W2929170389","https://openalex.org/W2891970004","https://openalex.org/W2748428003","https://openalex.org/W2057947873","https://openalex.org/W1974634278"],"abstract_inverted_index":{"Brain-inspired":[0],"Hyperdimensional":[1],"(HD)":[2],"computing":[3,23],"is":[4,105],"a":[5],"new":[6],"machine":[7],"learning":[8],"approach":[9],"that":[10,46],"leverages":[11],"simple":[12],"and":[13,51,65,98,112],"highly":[14],"parallelizable":[15],"operations.":[16,102],"Unfortunately,":[17],"none":[18],"of":[19],"the":[20],"published":[21],"HD":[22,81],"algorithms":[24],"to":[25,30,79],"date":[26],"have":[27],"been":[28],"able":[29],"accurately":[31],"classify":[32],"more":[33,114],"complex":[34,55],"image":[35,70],"datasets,":[36],"such":[37],"as":[38,77],"CIFAR100.":[39],"In":[40],"this":[41],"work,":[42],"we":[43],"propose":[44],"HDnn-PIM,":[45],"implements":[47],"both":[48],"feature":[49],"extraction":[50],"HD-based":[52],"classification":[53],"for":[54,68],"images":[56],"by":[57],"using":[58],"processing-in-memory.":[59],"We":[60],"compare":[61],"HDnn-PIM":[62,72,104],"with":[63,93],"HD-only":[64],"CNN":[66],"implementations":[67],"various":[69],"datasets.":[71],"achieves":[73],"52.4%":[74],"higher":[75],"accuracy":[76,87],"compared":[78],"pure":[80],"computing.":[82],"It":[83],"also":[84],"gains":[85],"1.2%":[86],"improvement":[88],"over":[89],"state-of-the-art":[90,118],"CNNs,":[91],"but":[92],"3.63x":[94],"smaller":[95],"memory":[96],"footprint":[97],"1.53x":[99],"less":[100],"MAC":[101],"Furthermore,":[103],"3.6x-223x":[106],"faster":[107],"than":[108,117],"RTX":[109],"3090":[110],"GPU,":[111],"3.7x":[113],"energy":[115],"efficient":[116],"FloatPIM.":[119]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281767790","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":1}],"updated_date":"2024-10-11T04:03:02.186643","created_date":"2022-06-13"}