iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1145/3488560.3498438
{"id":"https://openalex.org/W4225711410","doi":"https://doi.org/10.1145/3488560.3498438","title":"RLMob","display_name":"RLMob","publication_year":2022,"publication_date":"2022-02-11","ids":{"openalex":"https://openalex.org/W4225711410","doi":"https://doi.org/10.1145/3488560.3498438"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3488560.3498438","pdf_url":null,"source":{"id":"https://openalex.org/S4363608885","display_name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081989147","display_name":"Ziyan Luo","orcid":"https://orcid.org/0000-0002-6091-0036"},"institutions":[{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"education","lineage":["https://openalex.org/I5023651"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Ziyan Luo","raw_affiliation_strings":["Mila, McGill University, Montreal, PQ, Canada"],"affiliations":[{"raw_affiliation_string":"Mila, McGill University, Montreal, PQ, Canada","institution_ids":["https://openalex.org/I5023651"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5027623536","display_name":"Congcong Miao","orcid":"https://orcid.org/0000-0003-3265-049X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Congcong Miao","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.056,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.876271,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Activity Recognition in Pervasive Computing Environments","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Trajectory Data Mining and Analysis","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/predictability","display_name":"Predictability","score":0.578776},{"id":"https://openalex.org/keywords/human-mobility","display_name":"Human Mobility","score":0.568576},{"id":"https://openalex.org/keywords/location-prediction","display_name":"Location Prediction","score":0.556674},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.515285},{"id":"https://openalex.org/keywords/trajectory-data-mining","display_name":"Trajectory Data Mining","score":0.504821},{"id":"https://openalex.org/keywords/urban-analysis","display_name":"Urban Analysis","score":0.501466}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8208194},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.64700776},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.6407513},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5789932},{"id":"https://openalex.org/C197640229","wikidata":"https://www.wikidata.org/wiki/Q2534066","display_name":"Predictability","level":2,"score":0.578776},{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.56923515},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5573407},{"id":"https://openalex.org/C72434380","wikidata":"https://www.wikidata.org/wiki/Q230930","display_name":"State space","level":2,"score":0.46650356},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.45039573},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.44973296},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.43327343},{"id":"https://openalex.org/C48103436","wikidata":"https://www.wikidata.org/wiki/Q599031","display_name":"State (computer science)","level":2,"score":0.4119869},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.36816096},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.15776196},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3488560.3498438","pdf_url":null,"source":{"id":"https://openalex.org/S4363608885","display_name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.77,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1972243012","https://openalex.org/W2009779426","https://openalex.org/W2017921654","https://openalex.org/W2071702404","https://openalex.org/W2126194848","https://openalex.org/W2741206673","https://openalex.org/W2788114581","https://openalex.org/W2911662370","https://openalex.org/W2944311919","https://openalex.org/W2964341035","https://openalex.org/W2980707094","https://openalex.org/W2997590591","https://openalex.org/W3043557120","https://openalex.org/W3152768544","https://openalex.org/W3176198369"],"related_works":["https://openalex.org/W4388236136","https://openalex.org/W4255368532","https://openalex.org/W4200250224","https://openalex.org/W2947128950","https://openalex.org/W2807018115","https://openalex.org/W2482498454","https://openalex.org/W2285658092","https://openalex.org/W2162286586","https://openalex.org/W2126560268","https://openalex.org/W187740018"],"abstract_inverted_index":{"Human":[0],"mobility":[1,25,36,43,61,134],"prediction":[2,44,177],"is":[3,77,159,205,219,242],"an":[4,160,212],"important":[5],"task":[6,165],"in":[7,115,118,132,147],"the":[8,19,32,59,71,74,88,107,113,148,175,235,237,248],"field":[9],"of":[10,34,41,214,239,247],"spatiotemporal":[11],"sequential":[12],"data":[13],"mining":[14,23],"and":[15,55,80,94,124],"urban":[16],"computing.":[17],"Despite":[18],"extensive":[20],"work":[21],"on":[22,48,234],"human":[24,42],"behavior,":[26],"little":[27],"attention":[28],"was":[29],"paid":[30],"to":[31,58,70,105,112,166,174,198,221,223,245],"problem":[33,185],"successive":[35,60,133,176],"prediction.":[37],"The":[38],"state-of-the-art":[39],"methods":[40,152],"are":[45,64,91],"mainly":[46],"based":[47],"supervised":[49],"learning.":[50],"To":[51],"achieve":[52],"higher":[53],"predictability":[54],"adapt":[56,222],"well":[57],"prediction,":[62],"there":[63],"four":[65],"key":[66],"challenges:":[67],"1)":[68],"disability":[69],"circumstance":[72],"that":[73,87,143,233,246],"optimizing":[75],"target":[76],"discrete-continuous":[78,100],"hybrid":[79,101],"non-differentiable.":[81],"In":[82,179],"our":[83,200,224,240],"work,":[84],"we":[85,182],"assume":[86],"user's":[89,140],"demands":[90],"always":[92],"multi-targeted":[93],"can":[95],"be":[96],"modeled":[97],"as":[98,186],"a":[99,187,194,227],"function;":[102],"2)":[103],"difficulty":[104],"alter":[106],"recommendation":[108],"strategy":[109],"flexibly":[110],"according":[111],"changes":[114],"user":[116],"needs":[117],"real":[119],"scenarios;":[120],"3)":[121],"error":[122],"propagation":[123],"exposure":[125],"bias":[126],"issues":[127],"when":[128],"predicting":[129],"multiple":[130],"points":[131],"prediction;":[135],"4)":[136],"cannot":[137],"interactively":[138],"explore":[139],"potential":[141],"interest":[142],"does":[144],"not":[145],"appear":[146],"history.":[149],"While":[150],"previous":[151],"met":[153],"these":[154,168],"difficulties,":[155],"reinforcement":[156],"learning":[157],"(RL)":[158],"intuitive":[161],"answer":[162],"for":[163],"this":[164,180,184],"settle":[167],"issues.":[169],"We":[170,191],"innovatively":[171],"introduce":[172],"RL":[173],"task.":[178],"paper,":[181],"formulate":[183],"Markov":[188],"Decision":[189],"Process.":[190],"further":[192],"propose":[193],"framework":[195,210],"-":[196],"RLMob":[197],"solve":[199],"problem.":[201],"A":[202],"simulated":[203],"environment":[204],"carefully":[206],"designed.":[207],"An":[208],"actor-critic":[209],"with":[211,226],"instance":[213],"Proximal":[215],"Policy":[216],"Optimization":[217],"(PPO)":[218],"applied":[220],"scene":[225],"large":[228],"state":[229],"space.":[230],"Experiments":[231],"show":[232],"task,":[236],"performance":[238],"approach":[241],"consistently":[243],"superior":[244],"compared":[249],"approaches.":[250]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225711410","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2024-10-17T21:16:40.478885","created_date":"2022-05-05"}