{"id":"https://openalex.org/W3206516528","doi":"https://doi.org/10.1145/3474085.3475410","title":"ReLLIE: Deep Reinforcement Learning for Customized Low-Light Image Enhancement","display_name":"ReLLIE: Deep Reinforcement Learning for Customized Low-Light Image Enhancement","publication_year":2021,"publication_date":"2021-10-17","ids":{"openalex":"https://openalex.org/W3206516528","doi":"https://doi.org/10.1145/3474085.3475410","mag":"3206516528"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3474085.3475410","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2107.05830","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090649169","display_name":"Rongkai Zhang","orcid":"https://orcid.org/0000-0002-0034-460X"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Rongkai Zhang","raw_affiliation_strings":["Nanyang Technological University, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101553481","display_name":"Lanqing Guo","orcid":"https://orcid.org/0000-0002-9452-4723"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Lanqing Guo","raw_affiliation_strings":["Nanyang Technological University, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021639720","display_name":"Siyu Huang","orcid":"https://orcid.org/0000-0002-2929-0115"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Siyu Huang","raw_affiliation_strings":["Nanyang Technological University, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024709593","display_name":"Bihan Wen","orcid":"https://orcid.org/0000-0002-6874-6453"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Bihan Wen","raw_affiliation_strings":["Nanyang Technological University, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore, Singapore","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.584,"has_fulltext":false,"cited_by_count":41,"citation_normalized_percentile":{"value":0.748913,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Single Image Super-Resolution Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image Denoising Techniques and Algorithms","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/low-light-enhancement","display_name":"Low-Light Enhancement","score":0.663029},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.592819},{"id":"https://openalex.org/keywords/single-image-restoration","display_name":"Single Image Restoration","score":0.580312},{"id":"https://openalex.org/keywords/contrast-enhancement","display_name":"Contrast Enhancement","score":0.568841},{"id":"https://openalex.org/keywords/image-denoising","display_name":"Image Denoising","score":0.567768},{"id":"https://openalex.org/keywords/image-processing","display_name":"Image Processing","score":0.52968},{"id":"https://openalex.org/keywords/image-translation","display_name":"Image translation","score":0.51204354}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.8122593},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7956449},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.64254725},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6377506},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.592819},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5725006},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.56404805},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.51445794},{"id":"https://openalex.org/C2779757391","wikidata":"https://www.wikidata.org/wiki/Q6002292","display_name":"Image translation","level":3,"score":0.51204354},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5104414},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4413384},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.43994355},{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.41501972},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33352613},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32326245},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.28930503},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08966598},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3474085.3475410","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2107.05830","pdf_url":"https://arxiv.org/pdf/2107.05830","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2107.05830","pdf_url":"https://arxiv.org/pdf/2107.05830","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.83,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1987444808","https://openalex.org/W2048695508","https://openalex.org/W2054814429","https://openalex.org/W2116973876","https://openalex.org/W2146439264","https://openalex.org/W2155027007","https://openalex.org/W2254039850","https://openalex.org/W2412926690","https://openalex.org/W2566376500","https://openalex.org/W2735974062","https://openalex.org/W2764207251","https://openalex.org/W2900130428","https://openalex.org/W2902132986","https://openalex.org/W2962785568","https://openalex.org/W2963466723","https://openalex.org/W2963967766","https://openalex.org/W2964343197","https://openalex.org/W2981718299","https://openalex.org/W3034347506","https://openalex.org/W3034895805","https://openalex.org/W3035731588","https://openalex.org/W3104725225","https://openalex.org/W3108910236","https://openalex.org/W3125028070","https://openalex.org/W3163738807","https://openalex.org/W3168898826","https://openalex.org/W3195113607","https://openalex.org/W4241614188"],"related_works":["https://openalex.org/W4225269853","https://openalex.org/W3168977894","https://openalex.org/W3096874164","https://openalex.org/W2937181779","https://openalex.org/W2386410636","https://openalex.org/W2357975469","https://openalex.org/W2341346307","https://openalex.org/W2145363145","https://openalex.org/W1985560493","https://openalex.org/W1626977535"],"abstract_inverted_index":{"Low-light":[0],"image":[1,101,111],"enhancement":[2],"(LLIE)":[3],"is":[4,90,164],"a":[5,44,61,79,87,99,106,144],"pervasive":[6],"yet":[7],"challenging":[8],"problem,":[9],"since:":[10],"1)":[11],"low-light":[12,55,100,117],"measurements":[13,118],"may":[14],"vary":[15],"due":[16],"to":[17,30,92,159],"different":[18,129],"imaging":[19],"conditions":[20],"in":[21],"practice;":[22],"2)":[23],"images":[24,136],"can":[25,114,133],"be":[26],"enlightened":[27],"subjectively":[28],"according":[29],"diverse":[31],"preference":[32],"by":[33,124,142],"each":[34],"individual.":[35],"To":[36],"tackle":[37],"these":[38],"two":[39],"challenges,":[40],"this":[41],"paper":[42],"presents":[43],"novel":[45],"deep":[46],"reinforcement":[47],"learning":[48],"based":[49],"method,":[50],"dubbed":[51],"ReLLIE,":[52,157],"for":[53,96],"customized":[54,121],"enhancement.":[56],"ReLLIE":[57,104,132],"models":[58],"LLIE":[59],"as":[60],"markov":[62],"decision":[63],"process,":[64],"i.e.,":[65,140],"estimating":[66],"the":[67,75,94,127,154,160],"pixel-wise":[68],"image-specific":[69],"curves":[70,95],"sequentially":[71],"and":[72,119],"recurrently.":[73],"Given":[74],"reward":[76],"computed":[77],"from":[78],"set":[80],"of":[81,98,109,156],"carefully":[82],"crafted":[83],"non-reference":[84],"loss":[85],"functions,":[86],"lightweight":[88],"network":[89],"proposed":[91],"estimate":[93],"enlightening":[97],"input.":[102],"As":[103],"learns":[105],"policy":[107,128],"instead":[108],"one-one":[110],"translation,":[112],"it":[113],"handle":[115],"various":[116,151],"provide":[120],"enhanced":[122],"outputs":[123],"flexibly":[125],"applying":[126],"times.":[130],"Furthermore,":[131],"enhance":[134],"real-world":[135],"with":[137],"hybrid":[138],"corruptions,":[139],"noise,":[141],"using":[143],"plug-and-play":[145],"denoiser":[146],"easily.":[147],"Extensive":[148],"experiments":[149],"on":[150],"benchmarks":[152],"demonstrate":[153],"advantages":[155],"comparing":[158],"state-of-the-art":[161],"methods.":[162],"(Code":[163],"available:":[165],"https://github.com/GuoLanqing/ReLLIE.)":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3206516528","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":24},{"year":2022,"cited_by_count":8}],"updated_date":"2024-11-28T18:39:48.603521","created_date":"2021-10-25"}