iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1145/3352020.3352030
{"id":"https://openalex.org/W2964433888","doi":"https://doi.org/10.1145/3352020.3352030","title":"Bringing Engineering Rigor to Deep Learning","display_name":"Bringing Engineering Rigor to Deep Learning","publication_year":2019,"publication_date":"2019-07-25","ids":{"openalex":"https://openalex.org/W2964433888","doi":"https://doi.org/10.1145/3352020.3352030","mag":"2964433888"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3352020.3352030","pdf_url":null,"source":{"id":"https://openalex.org/S50071195","display_name":"ACM SIGOPS Operating Systems Review","issn_l":"0163-5980","issn":["0163-5980","1943-586X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007048525","display_name":"Kexin Pei","orcid":null},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kexin Pei","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100385178","display_name":"Shiqi Wang","orcid":"https://orcid.org/0000-0002-3583-959X"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shiqi Wang","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101415638","display_name":"Yuchi Tian","orcid":"https://orcid.org/0000-0002-9711-1449"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yuchi Tian","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084656873","display_name":"Justin Whitehouse","orcid":null},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Justin Whitehouse","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051997905","display_name":"Carl Vondrick","orcid":"https://orcid.org/0000-0003-1139-9208"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Carl Vondrick","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070605476","display_name":"Yinzhi Cao","orcid":"https://orcid.org/0000-0002-9618-4830"},"institutions":[{"id":"https://openalex.org/I145311948","display_name":"Johns Hopkins University","ror":"https://ror.org/00za53h95","country_code":"US","type":"education","lineage":["https://openalex.org/I145311948"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yinzhi Cao","raw_affiliation_strings":["Johns Hopkins University, Baltimore, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University, Baltimore, MD, USA","institution_ids":["https://openalex.org/I145311948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064541855","display_name":"Baishakhi Ray","orcid":"https://orcid.org/0000-0003-3406-5235"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Baishakhi Ray","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016425387","display_name":"Suman Jana","orcid":"https://orcid.org/0000-0002-9850-2169"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Suman Jana","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101783316","display_name":"Junfeng Yang","orcid":"https://orcid.org/0000-0001-7771-0260"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Junfeng Yang","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.473,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.760253,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":"53","issue":"1","first_page":"59","last_page":"67"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Characterization and Detection of Android Malware","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.57398903},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.535874},{"id":"https://openalex.org/keywords/dynamic-analysis","display_name":"Dynamic Analysis","score":0.521425},{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.514569},{"id":"https://openalex.org/keywords/detection","display_name":"Detection","score":0.508259},{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.42615366}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82812005},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.7359051},{"id":"https://openalex.org/C55439883","wikidata":"https://www.wikidata.org/wiki/Q360812","display_name":"Correctness","level":2,"score":0.72208416},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6934109},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65793455},{"id":"https://openalex.org/C541664917","wikidata":"https://www.wikidata.org/wiki/Q14001","display_name":"Malware","level":2,"score":0.6268992},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.57398903},{"id":"https://openalex.org/C34413123","wikidata":"https://www.wikidata.org/wiki/Q170978","display_name":"Robotics","level":3,"score":0.5452448},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4867132},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4737673},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.4470128},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43844542},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.42615366},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.27527696},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.26247633},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.13489273},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.086484104}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3352020.3352030","pdf_url":null,"source":{"id":"https://openalex.org/S50071195","display_name":"ACM SIGOPS Operating Systems Review","issn_l":"0163-5980","issn":["0163-5980","1943-586X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":75,"referenced_works":["https://openalex.org/W1483853048","https://openalex.org/W1507872748","https://openalex.org/W1530655230","https://openalex.org/W1686810756","https://openalex.org/W1710734607","https://openalex.org/W1787074469","https://openalex.org/W1893133781","https://openalex.org/W1932198206","https://openalex.org/W1999288406","https://openalex.org/W2009489720","https://openalex.org/W2038296020","https://openalex.org/W2043100293","https://openalex.org/W2082000355","https://openalex.org/W2082190528","https://openalex.org/W2101512909","https://openalex.org/W2104839588","https://openalex.org/W2110889728","https://openalex.org/W2122672392","https://openalex.org/W2131798279","https://openalex.org/W2138788987","https://openalex.org/W2160815625","https://openalex.org/W2169870841","https://openalex.org/W2183341477","https://openalex.org/W2194775991","https://openalex.org/W2274287116","https://openalex.org/W2461725797","https://openalex.org/W2467691813","https://openalex.org/W2531409750","https://openalex.org/W2533523411","https://openalex.org/W2535617737","https://openalex.org/W2565186948","https://openalex.org/W2574797807","https://openalex.org/W2592480533","https://openalex.org/W2594877703","https://openalex.org/W2607037079","https://openalex.org/W2612445135","https://openalex.org/W2616028256","https://openalex.org/W2618530766","https://openalex.org/W2734963828","https://openalex.org/W2742136182","https://openalex.org/W2766108848","https://openalex.org/W2766447205","https://openalex.org/W2777430404","https://openalex.org/W2791251367","https://openalex.org/W2794609696","https://openalex.org/W2798356176","https://openalex.org/W2803850896","https://openalex.org/W2804337238","https://openalex.org/W2807040120","https://openalex.org/W2890472662","https://openalex.org/W2890660842","https://openalex.org/W2898868990","https://openalex.org/W2900153411","https://openalex.org/W2913059114","https://openalex.org/W2914304175","https://openalex.org/W2920498407","https://openalex.org/W2949205117","https://openalex.org/W2949346385","https://openalex.org/W2952054889","https://openalex.org/W2953106684","https://openalex.org/W2962943487","https://openalex.org/W2963207607","https://openalex.org/W2963327228","https://openalex.org/W2963446712","https://openalex.org/W2963913218","https://openalex.org/W2964081807","https://openalex.org/W2964153729","https://openalex.org/W2998259759","https://openalex.org/W2999818597","https://openalex.org/W4200268060","https://openalex.org/W4234542549","https://openalex.org/W4234552385","https://openalex.org/W4252150051","https://openalex.org/W4297775537","https://openalex.org/W4300939921"],"related_works":["https://openalex.org/W4383221314","https://openalex.org/W4285785480","https://openalex.org/W3203790781","https://openalex.org/W3127875750","https://openalex.org/W3093978547","https://openalex.org/W3080754722","https://openalex.org/W2997056298","https://openalex.org/W2950183588","https://openalex.org/W2738001131","https://openalex.org/W2618574054"],"abstract_inverted_index":{"Deep":[0],"learning":[1],"(DL)":[2],"systems":[3,126,143,196],"are":[4,30,72,181],"increasingly":[5],"deployed":[6],"in":[7,168],"safety-":[8],"and":[9,16,22,92,132,159,175,197,211],"security-critical":[10],"domains":[11,170],"including":[12],"autonomous":[13,173],"driving,":[14,174],"robotics,":[15],"malware":[17,176],"detection,":[18],"where":[19],"the":[20,35,80,103,134],"correctness":[21],"predictability":[23],"of":[24,31,136,148,162,184],"a":[25,40,50,145],"system":[26],"on":[27,49,111],"corner-case":[28,61,88],"inputs":[29],"great":[32],"importance.":[33],"Unfortunately,":[34],"common":[36],"practice":[37],"to":[38,59,79,86,127,203],"validating":[39],"deep":[41,117],"neural":[42],"network":[43],"(DNN)":[44],"-":[45,55],"measuring":[46],"overall":[47],"accuracy":[48,71],"randomly":[51],"selected":[52],"test":[53,87,128],"set":[54],"is":[56],"not":[57],"designed":[58],"surface":[60],"errors.":[62],"As":[63],"recent":[64],"work":[65],"shows,":[66],"even":[67],"DNNs":[68,129,167],"with":[69],"state-of-the-art":[70],"easily":[73],"fooled":[74],"by":[75],"human-imperceptible,":[76],"adversarial":[77,95,137],"perturbations":[78],"inputs.":[81],"Questions":[82],"such":[83],"as":[84],"how":[85],"behaviors":[89],"more":[90,113,130,206],"thoroughly":[91,131],"whether":[93],"all":[94],"samples":[96,138,164],"have":[97,108,123],"been":[98,109],"found":[99],"remain":[100],"unanswered.":[101],"In":[102],"last":[104],"few":[105],"years,":[106],"we":[107,122],"working":[110],"bringing":[112],"engineering":[114],"rigor":[115],"into":[116],"learning.":[118],"Towards":[119],"this":[120],"goal,":[121],"built":[124],"five":[125],"verify":[133],"absence":[135],"for":[139,165],"given":[140],"datasets.":[141],"These":[142],"check":[144],"broad":[146],"spectrum":[147],"properties":[149],"(e.g.,":[150,171,186],"rotating":[151],"an":[152],"image":[153],"should":[154],"never":[155],"change":[156],"its":[157],"classification)":[158],"find":[160],"thousands":[161],"error-inducing":[163],"popular":[166],"critical":[169],"ImageNet,":[172],"detection).":[177],"Our":[178],"DNN":[179],"verifiers":[180],"also":[182],"orders":[183],"magnitude":[185],"5,000\u00d7)":[187],"faster":[188],"than":[189],"similar":[190],"tools.":[191],"This":[192],"article":[193],"overviews":[194],"our":[195],"discusses":[198],"three":[199],"open":[200],"research":[201,208],"challenges":[202],"hopefully":[204],"inspire":[205],"future":[207],"towards":[209],"testing":[210],"verifying":[212],"DNNs.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964433888","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2}],"updated_date":"2024-10-09T12:17:15.263481","created_date":"2019-08-13"}