{"id":"https://openalex.org/W2897547002","doi":"https://doi.org/10.1145/3269206.3269324","title":"Semi-Supervised Collaborative Learning for Social Spammer and Spam Message Detection in Microblogging","display_name":"Semi-Supervised Collaborative Learning for Social Spammer and Spam Message Detection in Microblogging","publication_year":2018,"publication_date":"2018-10-17","ids":{"openalex":"https://openalex.org/W2897547002","doi":"https://doi.org/10.1145/3269206.3269324","mag":"2897547002"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3269206.3269324","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076423724","display_name":"Fangzhao Wu","orcid":"https://orcid.org/0000-0001-9138-1272"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fangzhao Wu","raw_affiliation_strings":["Microsoft Research Asia, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft Research Asia, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001967239","display_name":"Chuhan Wu","orcid":"https://orcid.org/0000-0001-5730-8792"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chuhan Wu","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068189045","display_name":"Junxin Liu","orcid":"https://orcid.org/0009-0000-6634-4031"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junxin Liu","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.607,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.695627,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":"6","issue":null,"first_page":"1791","last_page":"1794"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11644","display_name":"Detection and Prevention of Phishing Attacks","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11644","display_name":"Detection and Prevention of Phishing Attacks","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Intrusion Detection and Defense Mechanisms","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/microblogging","display_name":"Microblogging","score":0.8562616},{"id":"https://openalex.org/keywords/spam-detection","display_name":"Spam Detection","score":0.636196},{"id":"https://openalex.org/keywords/botnet-detection","display_name":"Botnet Detection","score":0.539474},{"id":"https://openalex.org/keywords/review-spam","display_name":"Review Spam","score":0.535278},{"id":"https://openalex.org/keywords/bot-detection","display_name":"Bot Detection","score":0.531067},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised learning","score":0.48786664},{"id":"https://openalex.org/keywords/forum-spam","display_name":"Forum spam","score":0.4403776},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.43265766}],"concepts":[{"id":"https://openalex.org/C158955206","wikidata":"https://www.wikidata.org/wiki/Q83058","display_name":"Spamming","level":3,"score":0.99055076},{"id":"https://openalex.org/C143275388","wikidata":"https://www.wikidata.org/wiki/Q92438","display_name":"Microblogging","level":3,"score":0.8562616},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8205008},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.681237},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.67667603},{"id":"https://openalex.org/C127735637","wikidata":"https://www.wikidata.org/wiki/Q2306702","display_name":"Spambot","level":4,"score":0.61647505},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.5302975},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.48786664},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47315535},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4491548},{"id":"https://openalex.org/C157310412","wikidata":"https://www.wikidata.org/wiki/Q3140915","display_name":"Forum spam","level":5,"score":0.4403776},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.43265766},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.3877431},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.3330254},{"id":"https://openalex.org/C110875604","wikidata":"https://www.wikidata.org/wiki/Q75","display_name":"The Internet","level":2,"score":0.16662258},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.07719174}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3269206.3269324","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W113059239","https://openalex.org/W146417747","https://openalex.org/W1479807131","https://openalex.org/W1775665607","https://openalex.org/W1983320747","https://openalex.org/W1989060270","https://openalex.org/W1996802155","https://openalex.org/W2008347539","https://openalex.org/W2039281672","https://openalex.org/W2064237629","https://openalex.org/W2107968230","https://openalex.org/W2120111750","https://openalex.org/W2125347318","https://openalex.org/W2152246671","https://openalex.org/W2165701072","https://openalex.org/W2603699330","https://openalex.org/W2749421715","https://openalex.org/W3101782091","https://openalex.org/W9223698"],"related_works":["https://openalex.org/W4293384513","https://openalex.org/W2898345088","https://openalex.org/W2403960249","https://openalex.org/W2095720311","https://openalex.org/W2080521416","https://openalex.org/W2018000323","https://openalex.org/W2006090454","https://openalex.org/W1965586806","https://openalex.org/W1937320931","https://openalex.org/W1502194589"],"abstract_inverted_index":{"It":[0],"is":[1,42],"important":[2],"to":[3,54],"detect":[4,56],"social":[5,20,57,69,100,120],"spammers":[6,21,58],"and":[7,22,39,59,72,104,123],"spam":[8,23,60,73,124],"messages":[9,24,61],"in":[10,62],"microblogging":[11,63],"platforms.":[12,64],"Existing":[13],"methods":[14],"usually":[15,37],"handle":[16],"the":[17,68,81,97,116],"detection":[18,122],"of":[19,99,102,118],"as":[25],"two":[26],"separate":[27],"tasks":[28],"using":[29],"supervised":[30],"learning":[31,52],"techniques.":[32],"However,":[33],"labeled":[34],"samples":[35,90],"are":[36,76,91],"scarce":[38],"manual":[40],"annotation":[41],"expensive.":[43],"In":[44,65,87],"this":[45],"paper,":[46],"we":[47],"propose":[48],"a":[49],"semi-supervised":[50],"collaborative":[51],"approach":[53,112],"jointly":[55],"our":[66,111],"approach,":[67],"spammer":[70,121],"classifier":[71,75],"message":[74,125],"collaboratively":[77],"trained":[78],"by":[79],"exploiting":[80],"inherent":[82],"relatedness":[83],"between":[84],"these":[85],"tasks.":[86],"addition,":[88],"unlabeled":[89],"incorporated":[92],"into":[93],"model":[94],"training":[95],"with":[96],"help":[98],"contexts":[101],"users":[103],"messages.":[105],"Experiments":[106],"on":[107],"real-world":[108],"dataset":[109],"show":[110],"can":[113],"effectively":[114],"improve":[115],"performance":[117],"both":[119],"detection.":[126]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2897547002","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3}],"updated_date":"2024-11-24T18:08:18.744112","created_date":"2018-10-26"}