{"id":"https://openalex.org/W2520814995","doi":"https://doi.org/10.1145/2950067.2950096","title":"Exploring the optimal learning technique for IBM TrueNorth platform to overcome quantization loss","display_name":"Exploring the optimal learning technique for IBM TrueNorth platform to overcome quantization loss","publication_year":2016,"publication_date":"2016-07-18","ids":{"openalex":"https://openalex.org/W2520814995","doi":"https://doi.org/10.1145/2950067.2950096","mag":"2520814995"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"http://dx.doi.org/10.1145/2950067.2950096","pdf_url":null,"source":{"id":"https://openalex.org/S4306420180","display_name":"International Symposium on Nanoscale Architectures","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":[],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103877341","display_name":"Hsin-Pai Cheng","orcid":null},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"education","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hsin-Pai Cheng","raw_affiliation_strings":["Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101491962","display_name":"Wei Wen","orcid":"https://orcid.org/0009-0004-4662-7703"},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"education","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wei Wen","raw_affiliation_strings":["Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090122720","display_name":"Chang Song","orcid":"https://orcid.org/0000-0002-1806-792X"},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"education","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chang Song","raw_affiliation_strings":["Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000748332","display_name":"Beiye Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"education","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Beiye Liu","raw_affiliation_strings":["Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100429403","display_name":"Hai Li","orcid":"https://orcid.org/0000-0003-3228-6544"},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"education","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hai Li","raw_affiliation_strings":["Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058073627","display_name":"Yiran Chen","orcid":"https://orcid.org/0000-0002-1486-8412"},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"education","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yiran Chen","raw_affiliation_strings":["Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering Department, University of Pittsburgh, 1238 Benedum Hall, PA 15261, United States","institution_ids":["https://openalex.org/I170201317"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.363,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.689194,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"185","last_page":"190"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11992","display_name":"CCD and CMOS Imaging Sensors","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.61360836},{"id":"https://openalex.org/keywords/ibm","display_name":"IBM","score":0.4774397},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.44461823},{"id":"https://openalex.org/keywords/neuromorphic-engineering","display_name":"Neuromorphic engineering","score":0.42646644}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6893487},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.6800097},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.6329196},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.61360836},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.53669137},{"id":"https://openalex.org/C70388272","wikidata":"https://www.wikidata.org/wiki/Q5968558","display_name":"IBM","level":2,"score":0.4774397},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.44461823},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.43933928},{"id":"https://openalex.org/C151927369","wikidata":"https://www.wikidata.org/wiki/Q1981312","display_name":"Neuromorphic engineering","level":3,"score":0.42646644},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.35107747},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33840927},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.32176754},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C171250308","wikidata":"https://www.wikidata.org/wiki/Q11468","display_name":"Nanotechnology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"http://dx.doi.org/10.1145/2950067.2950096","pdf_url":null,"source":{"id":"https://openalex.org/S4306420180","display_name":"International Symposium on Nanoscale Architectures","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.46}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1604973310","https://openalex.org/W1968712517","https://openalex.org/W1996336919","https://openalex.org/W2001480795","https://openalex.org/W2060956313","https://openalex.org/W2065261386","https://openalex.org/W2092608522","https://openalex.org/W2136439370","https://openalex.org/W2138913040","https://openalex.org/W2155893237","https://openalex.org/W2183631084","https://openalex.org/W587794757"],"related_works":["https://openalex.org/W3211535359","https://openalex.org/W3167035550","https://openalex.org/W3133936179","https://openalex.org/W3110741529","https://openalex.org/W3102452718","https://openalex.org/W3101112428","https://openalex.org/W3092443051","https://openalex.org/W3017487690","https://openalex.org/W2992437543","https://openalex.org/W2980812807","https://openalex.org/W2920117305","https://openalex.org/W2917342341","https://openalex.org/W2802512292","https://openalex.org/W2798668634","https://openalex.org/W2756779681","https://openalex.org/W2341783944","https://openalex.org/W2183631084","https://openalex.org/W2117305887","https://openalex.org/W2010601699","https://openalex.org/W1998917233"],"abstract_inverted_index":{"As":[0],"the":[1,20,27,54,66,71,76,90,94,104,108,111,129,132,136,141,149,154,162,170,176],"first":[2],"large-scale":[3],"commercial":[4],"spiking-based":[5],"neuromorphic":[6],"computing":[7],"platform,":[8],"IBM":[9],"TrueNorth":[10,24,98,119,158,190],"chip":[11,120],"received":[12],"tremendous":[13],"attentions":[14],"in":[15,23,65,80,89,107,114],"society.":[16],"However,":[17],"one":[18],"of":[19,30,34,52,57,93,157],"known":[21],"issues":[22],"design":[25],"is":[26,46,61,102],"limited":[28,122],"precision":[29],"synaptic":[31,59],"weights,":[32],"each":[33,58],"which":[35,53],"can":[36],"be":[37,126],"selected":[38],"from":[39,110],"only":[40],"four":[41],"integers.":[42],"The":[43,100],"current":[44],"workaround":[45],"running":[47],"multiple":[48],"neural":[49],"network":[50,113],"copies":[51],"average":[55],"value":[56],"weight":[60,134],"close":[62],"to":[63,118,181],"that":[64,103,148],"original":[67],"network.":[68],"To":[69],"improve":[70,153],"computation":[72,155],"accuracy":[73,156,183],"and":[74,135,160,165],"reduce":[75,161],"incurred":[77,163],"hardware":[78,164],"cost,":[79],"this":[81],"work,":[82],"we":[83],"investigate":[84],"seven":[85],"different":[86],"regularization":[87,174],"functions":[88],"cost":[91],"function":[92],"learning":[95],"process":[96],"on":[97],"platform.":[99,191],"hypothesis":[101],"quantization":[105],"loss":[106],"mapping":[109],"trained":[112,133],"floating-point":[115],"data":[116],"format":[117],"with":[121],"integer":[123],"values":[124],"shall":[125],"minimized":[127],"if":[128],"discrepancy":[130],"between":[131],"quantized":[137],"weights":[138],"by":[139],"optimizing":[140],"training":[142],"process.":[143],"Our":[144],"experimental":[145],"results":[146],"proved":[147],"proposed":[150],"techniques":[151],"considerably":[152],"platform":[159],"performance":[166],"overheads.":[167],"Among":[168],"all":[169],"tested":[171],"methods,":[172],"L1TEA":[173],"achieved":[175],"best":[177],"result,":[178],"say,":[179],"up":[180],"2.74%":[182],"enhancement":[184],"when":[185],"deploying":[186],"MNIST":[187],"application":[188],"onto":[189]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2520814995","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":2}],"updated_date":"2024-12-12T03:35:03.840196","created_date":"2016-09-23"}