iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.openalex.org/works/doi:10.1142/S0219691320500484
{"id":"https://openalex.org/W3041298650","doi":"https://doi.org/10.1142/s0219691320500484","title":"Retinal blood vessels detection for diabetic retinopathy with Ridgelet transform and convolution neural network","display_name":"Retinal blood vessels detection for diabetic retinopathy with Ridgelet transform and convolution neural network","publication_year":2020,"publication_date":"2020-07-07","ids":{"openalex":"https://openalex.org/W3041298650","doi":"https://doi.org/10.1142/s0219691320500484","mag":"3041298650"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0219691320500484","pdf_url":null,"source":{"id":"https://openalex.org/S56986848","display_name":"International Journal of Wavelets Multiresolution and Information Processing","issn_l":"0219-6913","issn":["0219-6913","1793-690X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5059801019","display_name":"Nirmal Yadav","orcid":"https://orcid.org/0000-0001-8784-5644"},"institutions":[{"id":"https://openalex.org/I110166357","display_name":"University of Delhi","ror":"https://ror.org/04gzb2213","country_code":"IN","type":"education","lineage":["https://openalex.org/I110166357"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Nirmal Yadav","raw_affiliation_strings":["Cluster Innovation Centre, University of Delhi, Delhi, India"],"affiliations":[{"raw_affiliation_string":"Cluster Innovation Centre, University of Delhi, Delhi, India","institution_ids":["https://openalex.org/I110166357"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5059801019"],"corresponding_institution_ids":["https://openalex.org/I110166357"],"apc_list":null,"apc_paid":null,"fwci":0.242,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.624828,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":"18","issue":"06","first_page":"2050048","last_page":"2050048"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11438","display_name":"Detection and Management of Retinal Diseases","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11438","display_name":"Detection and Management of Retinal Diseases","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12874","display_name":"Automated Analysis of Blood Cell Images","score":0.9762,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Machine Learning in Healthcare and Medicine","score":0.9719,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contourlet","display_name":"Contourlet","score":0.7742278},{"id":"https://openalex.org/keywords/s-transform","display_name":"S transform","score":0.5581652},{"id":"https://openalex.org/keywords/diabetic-retinopathy","display_name":"Diabetic Retinopathy","score":0.550379},{"id":"https://openalex.org/keywords/image-analysis","display_name":"Image Analysis","score":0.531864},{"id":"https://openalex.org/keywords/medical-image-analysis","display_name":"Medical Image Analysis","score":0.525675},{"id":"https://openalex.org/keywords/microscopic-blood-images","display_name":"Microscopic Blood Images","score":0.515427},{"id":"https://openalex.org/keywords/retinal-disease","display_name":"Retinal Disease","score":0.508651},{"id":"https://openalex.org/keywords/radon-transform","display_name":"Radon transform","score":0.48114884},{"id":"https://openalex.org/keywords/top-hat-transform","display_name":"Top-hat transform","score":0.43257666},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.4269333}],"concepts":[{"id":"https://openalex.org/C20479862","wikidata":"https://www.wikidata.org/wiki/Q5165589","display_name":"Contourlet","level":4,"score":0.7742278},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77360845},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7169817},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.6333779},{"id":"https://openalex.org/C99234102","wikidata":"https://www.wikidata.org/wiki/Q7395403","display_name":"S transform","level":5,"score":0.5581652},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5420689},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.52628666},{"id":"https://openalex.org/C197231052","wikidata":"https://www.wikidata.org/wiki/Q979829","display_name":"Radon transform","level":2,"score":0.48114884},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.46775815},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.44633046},{"id":"https://openalex.org/C180064427","wikidata":"https://www.wikidata.org/wiki/Q2880017","display_name":"Top-hat transform","level":5,"score":0.43257666},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.4269333},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.41851264},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3028518},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.2929288},{"id":"https://openalex.org/C104317675","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Digital image processing","level":4,"score":0.22134018},{"id":"https://openalex.org/C46286280","wikidata":"https://www.wikidata.org/wiki/Q2414958","display_name":"Discrete wavelet transform","level":4,"score":0.19677359},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.17080307}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1142/s0219691320500484","pdf_url":null,"source":{"id":"https://openalex.org/S56986848","display_name":"International Journal of Wavelets Multiresolution and Information Processing","issn_l":"0219-6913","issn":["0219-6913","1793-690X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319815","host_organization_name":"World Scientific","host_organization_lineage":["https://openalex.org/P4310319815"],"host_organization_lineage_names":["World Scientific"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.47,"display_name":"Responsible consumption and production","id":"https://metadata.un.org/sdg/12"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1832693441","https://openalex.org/W1982168774","https://openalex.org/W1989786678","https://openalex.org/W1993968798","https://openalex.org/W2066146532","https://openalex.org/W2098085110","https://openalex.org/W2132984323","https://openalex.org/W2136740129","https://openalex.org/W2145757144","https://openalex.org/W2166781165","https://openalex.org/W2290701356","https://openalex.org/W2327793514","https://openalex.org/W2413535587","https://openalex.org/W2511001480","https://openalex.org/W2520503963","https://openalex.org/W2529153069","https://openalex.org/W2597102615","https://openalex.org/W2626222319","https://openalex.org/W2784102018","https://openalex.org/W2891656133","https://openalex.org/W2892133319","https://openalex.org/W2923054028"],"related_works":["https://openalex.org/W2380199780","https://openalex.org/W2374887286","https://openalex.org/W2370557242","https://openalex.org/W2355627520","https://openalex.org/W2116231835","https://openalex.org/W2114806760","https://openalex.org/W2034834027","https://openalex.org/W2022661243","https://openalex.org/W1582470116","https://openalex.org/W145745464"],"abstract_inverted_index":{"Applying":[0],"machine":[1,18,57],"learning":[2,19,58,202],"in":[3,129,140],"life":[4],"sciences,":[5],"especially":[6],"diagnostics,":[7],"has":[8],"become":[9],"a":[10,24,149,160,235],"key":[11],"area":[12],"of":[13,27,41,63,76,88,101,127,137,151,175,185,224],"focus":[14],"for":[15,31,73,194],"researchers.":[16],"Combining":[17],"with":[20,97,122],"traditional":[21],"algorithms":[22,59],"provides":[23,70],"unique":[25],"opportunity":[26],"providing":[28],"better":[29,71,231],"solutions":[30],"the":[32,43,52,86,89,118,125,130,135,141,179,183,186,209,221,227,239],"patients.":[33],"In":[34,146,164],"this":[35,147,189],"paper,":[36],"we":[37],"present":[38],"study":[39],"results":[40,72],"applying":[42],"Ridgelet":[44,68,92,119,176,228],"Transform":[45,93,107,120,229],"method":[46,121,203],"on":[47,178],"retina":[48],"images":[49,207],"to":[50,60,82,181,204],"enhance":[51],"blood":[53],"vessels,":[54],"then":[55],"using":[56,117,226],"identify":[61],"cases":[62],"Diabetic":[64],"Retinopathy":[65],"(DR).":[66],"The":[67,91,114,211],"transform":[69,177],"line":[74],"singularity":[75],"image":[77,102,116,191,223],"function":[78],"and,":[79],"thus,":[80],"helps":[81],"reduce":[83],"artefacts":[84],"along":[85],"edges":[87],"image.":[90,187],"method,":[94],"when":[95],"compared":[96],"earlier":[98],"known":[99],"methods":[100],"enhancement,":[103],"such":[104],"as":[105],"Wavelet":[106],"and":[108,173,198,238],"Contourlet":[109],"Transform,":[110],"provided":[111],"satisfactory":[112],"results.":[113],"transformed":[115,222],"pre-processing":[123],"quantifies":[124],"amount":[126],"information":[128],"dataset.":[131,163,210],"It":[132],"efficiently":[133],"enhances":[134],"generation":[136],"features":[138],"vectors":[139],"convolution":[142],"neural":[143],"network":[144],"(CNN).":[145],"study,":[148],"sample":[150],"fundus":[152,225],"photographs":[153],"was":[154,157,168,192,215],"processed,":[155],"which":[156],"obtained":[158],"from":[159,208],"publicly":[161],"available":[162],"pre-processing,":[165],"first,":[166],"CLAHE":[167],"applied,":[169],"followed":[170],"by":[171,200,233],"filtering":[172],"application":[174],"patches":[180],"improve":[182],"quality":[184],"Then,":[188],"processed":[190],"used":[193],"statistical":[195],"feature":[196],"detection":[197,232],"classified":[199],"deep":[201,240],"detect":[205],"DR":[206],"successful":[212],"classification":[213],"ratio":[214],"98.61%.":[216],"This":[217],"result":[218],"concludes":[219],"that":[220],"enables":[230],"leveraging":[234],"transform-based":[236],"algorithm":[237],"learning.":[241]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3041298650","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-09-19T19:35:01.034222","created_date":"2020-07-16"}