{"id":"https://openalex.org/W2546169252","doi":"https://doi.org/10.1137/15m1026377","title":"Parallel Algorithms for Nearest Neighbor Search Problems in High Dimensions","display_name":"Parallel Algorithms for Nearest Neighbor Search Problems in High Dimensions","publication_year":2016,"publication_date":"2016-01-01","ids":{"openalex":"https://openalex.org/W2546169252","doi":"https://doi.org/10.1137/15m1026377","mag":"2546169252"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/15m1026377","pdf_url":null,"source":{"id":"https://openalex.org/S165512578","display_name":"SIAM Journal on Scientific Computing","issn_l":"1064-8275","issn":["1064-8275","1095-7197"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100771377","display_name":"Bo Xiao","orcid":"https://orcid.org/0000-0003-3392-3293"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bo Xiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5044137409","display_name":"George Biros","orcid":"https://orcid.org/0000-0002-0033-3994"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"George Biros","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.698,"has_fulltext":false,"cited_by_count":20,"citation_normalized_percentile":{"value":0.857027,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"38","issue":"5","first_page":"S667","last_page":"S699"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Active Learning in Machine Learning Research","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10996","display_name":"Mesh Generation Algorithms","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.71019566},{"id":"https://openalex.org/keywords/best-bin-first","display_name":"Best bin first","score":0.5864849},{"id":"https://openalex.org/keywords/approximation-algorithms","display_name":"Approximation Algorithms","score":0.548804},{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.544671},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.5254264},{"id":"https://openalex.org/keywords/cross-modal-retrieval","display_name":"Cross-Modal Retrieval","score":0.515735},{"id":"https://openalex.org/keywords/image-retrieval","display_name":"Image Retrieval","score":0.505858},{"id":"https://openalex.org/keywords/cover-tree","display_name":"Cover tree","score":0.46366552},{"id":"https://openalex.org/keywords/nearest-neighbor-graph","display_name":"Nearest neighbor graph","score":0.4315931}],"concepts":[{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.71019566},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6988931},{"id":"https://openalex.org/C113238511","wikidata":"https://www.wikidata.org/wiki/Q1071612","display_name":"k-nearest neighbors algorithm","level":2,"score":0.65799737},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.63633764},{"id":"https://openalex.org/C116738811","wikidata":"https://www.wikidata.org/wiki/Q608751","display_name":"Nearest neighbor search","level":2,"score":0.60685116},{"id":"https://openalex.org/C161986146","wikidata":"https://www.wikidata.org/wiki/Q4896845","display_name":"Best bin first","level":3,"score":0.5864849},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.5254264},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5253938},{"id":"https://openalex.org/C53661774","wikidata":"https://www.wikidata.org/wiki/Q13108095","display_name":"Cover tree","level":5,"score":0.46366552},{"id":"https://openalex.org/C125583679","wikidata":"https://www.wikidata.org/wiki/Q755673","display_name":"Search algorithm","level":2,"score":0.4544211},{"id":"https://openalex.org/C90988772","wikidata":"https://www.wikidata.org/wiki/Q2855103","display_name":"Nearest neighbor graph","level":3,"score":0.4315931},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.32691935},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.26409563},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20720685},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.15719268},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.121708095},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.12028724},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C104047586","wikidata":"https://www.wikidata.org/wiki/Q5033439","display_name":"Canopy clustering algorithm","level":4,"score":0.0},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1137/15m1026377","pdf_url":null,"source":{"id":"https://openalex.org/S165512578","display_name":"SIAM Journal on Scientific Computing","issn_l":"1064-8275","issn":["1064-8275","1095-7197"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320508","host_organization_name":"Society for Industrial and Applied Mathematics","host_organization_lineage":["https://openalex.org/P4310320508"],"host_organization_lineage_names":["Society for Industrial and Applied Mathematics"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"OCI-0749334"},{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CNS-0929947"},{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"OCI-0749285"},{"funder":"https://openalex.org/F4320306084","funder_display_name":"U.S. Department of Energy","award_id":"DE-FG02-08ER2585"},{"funder":"https://openalex.org/F4320338279","funder_display_name":"Air Force Office of Scientific Research","award_id":"FA9550-09-1-0679"}],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1480376833","https://openalex.org/W1497953515","https://openalex.org/W1528765304","https://openalex.org/W1541459201","https://openalex.org/W1560724230","https://openalex.org/W1627400044","https://openalex.org/W1870625491","https://openalex.org/W2001141328","https://openalex.org/W2007648666","https://openalex.org/W2024668293","https://openalex.org/W2034188144","https://openalex.org/W2035353512","https://openalex.org/W2038276547","https://openalex.org/W2049644877","https://openalex.org/W2053186076","https://openalex.org/W2068019092","https://openalex.org/W2080135560","https://openalex.org/W2082042699","https://openalex.org/W2086504823","https://openalex.org/W2088171019","https://openalex.org/W2089062907","https://openalex.org/W2099813373","https://openalex.org/W2103755321","https://openalex.org/W2118123209","https://openalex.org/W2124592110","https://openalex.org/W2133296809","https://openalex.org/W2145607950","https://openalex.org/W2148639889","https://openalex.org/W2149684715","https://openalex.org/W2164131708","https://openalex.org/W2169036209","https://openalex.org/W2539468248","https://openalex.org/W2962906164","https://openalex.org/W3120740533","https://openalex.org/W4245252159"],"related_works":["https://openalex.org/W4289129280","https://openalex.org/W4246757943","https://openalex.org/W3096071782","https://openalex.org/W2902799860","https://openalex.org/W2571415506","https://openalex.org/W2375128115","https://openalex.org/W2245581955","https://openalex.org/W2182477562","https://openalex.org/W1595303882","https://openalex.org/W1558159560"],"abstract_inverted_index":{"The":[0,92,102],"nearest":[1,80,99],"neighbor":[2,81,100],"search":[3,150,205],"problem":[4],"in":[5,10,161,219],"general":[6],"dimensions":[7,163,221],"finds":[8],"application":[9],"computational":[11,13],"geometry,":[12],"statistics,":[14],"pattern":[15],"recognition,":[16],"and":[17,30,44,64,76,97,109,128],"machine":[18,195],"learning.":[19],"Although":[20],"there":[21],"is":[22,104],"a":[23,65,152,207],"significant":[24],"body":[25],"of":[26,56,70,85,87,122,135,157,179,209,225],"work":[27,34],"on":[28,38,68,106,151,164,168,206,222],"theory":[29],"algorithms,":[31],"surprisingly":[32],"little":[33],"has":[35],"been":[36],"done":[37],"algorithms":[39,63,118],"for":[40,89,119,132],"high-end":[41],"computing":[42],"platforms,":[43],"no":[45],"open":[46],"source":[47],"library":[48,66,93],"exists":[49],"that":[50,78],"can":[51],"scale":[52],"efficiently":[53],"to":[54,83,145,191],"thousands":[55,86],"cores.":[57],"In":[58,138],"this":[59],"paper,":[60],"we":[61,142,187,201],"present":[62],"built":[67],"top":[69],"the":[71,120,123,133,136,165,210,226,230],"message":[72],"passing":[73],"interface":[74],"(MPI)":[75],"OpenMP":[77],"enable":[79],"searches":[82],"hundreds":[84],"cores":[88,167,224],"arbitrary-dimensional":[90],"datasets.":[91],"supports":[94],"both":[95],"exact":[96],"approximate":[98],"searches.":[101,114],"latter":[103],"based":[105],"iterative,":[107],"randomized,":[108],"greedy":[110],"KD-tree":[111],"($k$-dimensional":[112],"tree)":[113],"We":[115],"describe":[116],"novel":[117],"construction":[121],"KD-tree,":[124],"give":[125],"complexity":[126],"analysis,":[127],"provide":[129],"experimental":[130],"evidence":[131],"scalability":[134],"method.":[137],"our":[139,189],"largest":[140],"runs,":[141],"were":[143],"able":[144],"perform":[146,202],"an":[147,203],"all-neighbors":[148],"query":[149],"13":[153],"TB":[154],"synthetic":[155],"dataset":[156,214],"0.8":[158],"billion":[159],"points":[160,218],"2,048":[162],"131K":[166],"Oak":[169],"Ridge's":[170],"XK6":[171],"\u201cJaguar\u201d":[172],"system.":[173],"These":[174],"results":[175],"represent":[176],"several":[177],"orders":[178],"magnitude":[180],"improvement":[181],"over":[182],"current":[183],"state-of-the-art":[184],"methods.":[185],"Also,":[186],"apply":[188],"method":[190],"nonsynthetic":[192],"data":[193,197],"from":[194],"learning":[196],"repositories.":[198],"For":[199],"example,":[200],"all-nearest-neighbors":[204],"variant":[208],"\u201cMNIST\u201d":[211],"handwritten":[212],"digit":[213],"with":[215],"8":[216],"million":[217],"784":[220],"16,384":[223],"\u201cStampede\u201d":[227],"system":[228],"at":[229],"Texas":[231],"Advanced":[232],"Computing":[233],"Center,":[234],"achieving":[235],"less":[236],"than":[237],"one":[238],"second":[239],"per":[240],"\\tt":[241],"RKDT":[242],"iteration.":[243]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2546169252","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":6},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3}],"updated_date":"2024-12-03T02:38:15.476570","created_date":"2016-11-04"}